Can advil cause ringing in the ears

1. Spangler R.S. Cyclooxygenase 1 and 2 in rheumatic disease: Implications for nonsteroidal anti-inflammatory drug therapy. Semin. Arthritis. Rheum. 1996;26:435–446. [PubMed] [Google Scholar]

2. Chandrasekharan N.V., Dai H., Roos K.L., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA. 2002;99:13926–13931. [PMC free article] [PubMed] [Google Scholar]

3. Barnett J., Chow J., Ives D., Chiou M., Mackenzie R., Osen E., Nguyen B., Tsing S., Bach C., Freire J., Chan H., Sigal E., Ramesha C. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim. Biophys. Acta. 1994;1209:130–139. [PubMed] [Google Scholar]

4. Blanco F.J., Guitian R., Moreno J., de Toro F.J., Galdo F. Effect of antiinflammatory drugs on COX-1 and COX-2 activity in human articular chondrocytes. J. Rheumatol. 1999;26:1366–1373. [PubMed] [Google Scholar]

5. Stanfield K.M., Bell R.R., Lisowski A.R., English M.L., Saldeen S.S., Khan K.N. Expression of cyclooxygenase-2 in embryonic and fetal tissues during organogenesis and late pregnancy. Birth Defects Res. A. 2003;67:54–58. [PubMed] [Google Scholar]

6. Burdan F. Comparison of developmental toxicity of selective and non-selective cyclooxygenase-2 inhibitors in CRL: (WI)WUBR Wistar rats—DFU and piroxicam study. Toxicology. 2005;211:12–25. [PubMed] [Google Scholar]

7. Capdevila J.H., Harris R.C., Falck J.R. Microsomal cytochrome P450 and eicosanoid metabolism. Cell. Mol. Life Sci. 2002;59:780–789. [PubMed] [Google Scholar]

8. Boettcher F.A., Salvi R.J. Salicylate ototoxicity: review and synthesis. Am. J. Otolaryngol. 1991;12:33–47. [PubMed] [Google Scholar]

9. Brien J.A. Ototoxicity associated with salicylates: A brief review. Drug Saf. 1993;9:143–148. [PubMed] [Google Scholar]

10. Cazals Y. Auditory sensori-neural alterations induced by salicylate. Prog. Neurobiol. 2000;62:583–631. [PubMed] [Google Scholar]

11. Kujawa S.G., Fallon M., Bobbin R.P. Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear. Res. 1992;64:73–80. [PubMed] [Google Scholar]

12. Ueda H., Yamamoto Y., Yanagita N. Effct of aspirin on transiently evoked otoacoustic emissions in guinea pigs. ORL J. Otorhinolaryngol. Relat. Spec. 1996;58:61–67. [PubMed] [Google Scholar]

13. Gold A., Wilpizeski C.R. Studies in auditory adaptation: II. Some effects of sodium salicylate on evoked auditory potentials in cats. Laryngoscope. 1966;76:674–685. [PubMed] [Google Scholar]

14. Woodford C.M., Henderson D., Hamernik R.P. Effects of combinations of sodium salicylate and noise on the auditory threshold. Ann. Otol. Rhinol. Laryngol. 1978;87:117–127. [PubMed] [Google Scholar]

15. Tabuchi K., Tsuji S., Hara A., Kusakari J. Effect of calmodulin antagonists on the compound action potential of the cochlea. Hear. Res. 2000;145:59–64. [PubMed] [Google Scholar]

16. Mammano F., Ashmore J.F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature. 1993;365:838–841. [PubMed] [Google Scholar]

17. Murugasu E., Russell I.J. Salicylate ototoxicity: The effects on basilar membrane displacement, cochlear microphonics and neural responses in the basal turn of the guinea pig cochlea. Auditory Neurosci. 1995;1:139–150. [Google Scholar]

18. Puel J.L., Bobbin R.P., Fallon M. Salicylate, mefenamate, meclofenamate, and quinine on cochlear potentials. Otolaryngol. Head Neck Surg. 1990;102:66–73. [PubMed] [Google Scholar]

19. Didier A., Miller J.M., Nuttall A.L. The vascular component of sodium salicylate ototoxicity in the guinea pig. Hear. Res. 1993;69:199–206. [PubMed] [Google Scholar]

20. Dieler R., Shehata-Dieler W.E., Richter C.P., Klinke R. Effects of endolymphatic and perilymphatic application of salicylate in the pigeon. II: Fine structure of auditory hair cells. Hear. Res. 1994;74:85–98. doi: 10.1016/0378-5955(94)90178-3. [PubMed] [CrossRef] [Google Scholar]

21. Douek E.E., Dodson H.C., Bannister L.H. The effects of sodium salicylate on the cochlea of guinea pigs. J. Laryngol. Otol. 1983;97:793–799. [PubMed] [Google Scholar]

22. Johnsen N.J., Elberling C. Evoked acoustic emissions from the human ear. I. Equipment and response parameters. Scand. Audiol. 1982;11:3–12. doi: 10.3109/01050398209076194. [PubMed] [CrossRef] [Google Scholar]

23. Janssen T., Boege P., Oestreicher E., Arnold W. Tinnitus and 2f1-f2 distortion product otoacoustic emissions following salicylate overdose. J. Acoust. Soc. Am. 2000;107:1790–1792. [PubMed] [Google Scholar]

24. Wu T., Lv P., Yamoah E.N., Nuttall A.L. Effect of Salicylate on KCNQ4 of the Guinea Pig Outer Hair Cell. J. Neurophysiol. 2010 [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

25. Wei L., Ding D., Salvi R. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience. 2010 [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

26. Chen G.D., Kermany M.H., D’Elia A., Ralli M., Tanaka C., Bielefeld E.C., Ding D., Henderson D., Salvi R. Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear. Res. 2010 [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

27. Miller B., Sarantis M., Traynelis S.F., Attwell D. Potentiation of NMDA receptor currents by arachidonic acid. Nature. 1992;355:722–725. [PubMed] [Google Scholar]

28. Niedzielski A.S., Wenthold R.J. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J. Neurosci. 1995;15:2338–2353. [PMC free article] [PubMed] [Google Scholar]

29. Ruel J., Chen C., Pujol R., Bobbin R.P., Puel J.L. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea pig. J. Physiol. 1999;518:667–680. [PMC free article] [PubMed] [Google Scholar]

30. Ruel J., Bobbin R.P., Vidal D., Pujol R., Puel J.L. The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology. 2000;39:1959–1973. [PubMed] [Google Scholar]

31. Guitton M.J., Caston J., Ruel J., Johnson R.M., Pujol R., Puel J.L. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J. Neurosci. 2003;23:3944–3952. [PMC free article] [PubMed] [Google Scholar]

32. Knipper M., Zimmermann U., Muller M. Molecular aspects of tinnitus. Hear. Res. 2009 doi: 10.1016/j.heares.2009.07.013. [PubMed] [CrossRef] [Google Scholar]

33. Sun W., Lu J., Stolzberg D., Gray L., Deng A., Lobarinas E., Salvi R.J. Salicylate increases the gain of the central auditory system. Neuroscience. 2009;159:325–334. [PMC free article] [PubMed] [Google Scholar]

34. Norena A.J., Moffat G., Blanc J.L., Pezard L., Cazals Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: Salicylate and acoustic trauma. Neuroscience. 2010;166:1194–1209. [PubMed] [Google Scholar]

35. Eggermont J.J. Role of auditory cortex in noise- and drug-induced tinnitus. Am. J. Audiol. 2008;17:S162–S169. doi: 10.1044/1059-0889(2008/07-0025). [PubMed] [CrossRef] [Google Scholar]

36. Kizawa K., Kitahara T., Horii A., Maekawa C., Kuramasu T., Kawashima T., Nishiike S., Doi K., Inohara H. Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience. 2010;165:1323–1332. [PubMed] [Google Scholar]

37. Yu N., Zhu M.-L., Johnson B., Liu Y.-P., Jones R.O., Zhao H.-B. Prestin up-regulation in chronic salicylate (aspirin) administration: An implication of functional dependence of prestin expression. Cell Mol. Life Sci. 2008;65:2407–2418. doi: 10.1007/s00018-008-8195-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Panford-Walsh R., Singer W., Ruttiger L., Hadjab S., Tan J., Geisler H.S., Zimmermann U., Kopschall I., Rohbock K., Vieljans A., Oestreicher E., Knipper M. Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol. Pharmacol. 2008;74:595–604. doi: 10.1124/mol.108.046375. [PubMed] [CrossRef] [Google Scholar]

39. Singer W., Panford-Walsh R., Watermann D., Hendrich O., Zimmermann U., Kopschall I., Rohbock K., Knipper M. Salicylate alters the expression of calcium response transcription factor 1 in the cochlea: implications for brain-derived neurotrophic factor transcriptional regulation. Mol. Pharmacol. 2008;73:1085–1091. doi: 10.1124/mol.107.041814. [PubMed] [CrossRef] [Google Scholar]

40. Nam B.H., Kim P.S., Park Y.S., Worrell L.A., Park S.K., John E.O., Jung T.T., Duncan J., Fletcher W.H. Effect of corticosteroid on salicylate-induced morphological changes of isolated cochlear outer hair cells. Ann. Otol. Rhinol. Laryngol. 2004;113:734–737. [PubMed] [Google Scholar]

41. Zhi M., Ratnanather J.T., Ceyhan E., Popel A.S., Brownell W.E. Hypotonic swelling of salicylate-treated cochlear outer hair cells. Hear. Res. 2007;228:95–104. doi: 10.1016/j.heares.2007.02.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Zheng J., Shen W., He D.Z., Long K.B., Madison L.D., Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000;405:149–155. [PubMed] [Google Scholar]

43. Yang K., Huang Z.W., Liu Z.Q., Xiao B.K., Peng J.H. Long-term administration of salicylate enhances prestin expression in rat cochlea. Int. J. Audiol. 2009;48:18–23. [PubMed] [Google Scholar]

44. Lamm K., Arnold W. The effect of predonisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear. Res. 1998;115:149–161. [PubMed] [Google Scholar]

45. Kopke R.D., Weisskopf P.A., Boone J.L., Jackson R.L., Wester D.C., Hoffer M.E., Lambert D.C., Charon C.C., Ding D.L., McBride D. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear. Res. 2000;149:138–146. [PubMed] [Google Scholar]

46. Sha S.H., Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab. Invest. 1999;79:807–813. [PubMed] [Google Scholar]

47. Li G., Sha S.H., Zotova E., Arezzo J., Van de Water T., Schacht J. Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab. Invest. 2002;82:585–596. doi: 10.1038/labinvest.3780453. [PubMed] [CrossRef] [Google Scholar]

48. Hyppolito M.A., de Oliveira J.A., Rossato M. Cisplatin ototoxicity and otoprotection with sodium salicylate. Eur. Arch. Otorhinolaryngol. 2006;263:798–803. doi: 10.1007/s00405-006-0070-6. [PubMed] [CrossRef] [Google Scholar]

49. Yamashita D., Jiang H.Y., Le Prell C.G., Schacht J., Miller J.M. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience. 2005;134:633–642. [PubMed] [Google Scholar]

50. Stjernschantz J., Wentzel P., Rask-Andersen H. Localization of prostanoid receptors and cyclooxygenase enzymes in guinea pig and human cochlea. Hear. Res. 2004;197:65–73. [PubMed] [Google Scholar]

51. Ziegler E.A., Brieger J., Heinrich U.R., Mann W.J. Immunohistochemical localization of cyclooxygenase isoforms in the organ of Corti and the spiral ganglion cells of guinea pig cochlea. ORL J. Otorhinolaryngol. Relat. Spec. 2004;66:297–301. doi: 10.1159/000081885. [PubMed] [CrossRef] [Google Scholar]

52. Heinrich U.R., Bringer J., Selivanova O, Feltens R., Eimermacher A., Schäfer D., Mann W.J. COX-2 expression in the guinea pig cochlea is partly altered by moderate sound exposure. Neurosci. Lett. 2006;39:121–126. [PubMed] [Google Scholar]

53. Previati M., Lanzoni I., Corbacella E., Magosso S., Giuffrè S., Francioso F., Arcelli D., Volinia S., Barbieri A., Hatzopoulos S., Capitani S., Martini A. RNA expression induced by cisplatin in an organ of Corti-derived immortalized cell line. Hear. Res. 2004;196:8–18. [PubMed] [Google Scholar]

54. Hoshino T., Tabuchi K., Hirose Y., Uemaetomari I., Murashita H., Tobita T., Hara A. The non-steroidal anti-inflammatory drugs protect mouse cochlea against acoustic injury. Tohoku J. Exp. Med. 2008;216:53–59. [PubMed] [Google Scholar]

55. Tabuchi K., Ito Z., Tsuji S., Wada T., Takahashi K., Hara A., Kusakari J. The contribution of phospholipase A2 to the cochlear dysfunction induced by transient ischemia. Hear. Res. 2000;144:1–7. doi: 10.1016/S0378-5955(00)00038-1. [PubMed] [CrossRef] [Google Scholar]

56. Hirose Y., Tabuchi K., Oikawa K., Murashita H., Sakai S., Hara A. The effects of the glucocorticoid receptor antagonist RU486 and phospholipase A2 inhibitor quinacrine on acoustic injury of the mouse cochlea. Neurosci. Lett. 2007;413:63–67. doi: 10.1016/j.neulet.2006.11.029. [PubMed] [CrossRef] [Google Scholar]

57. Tabuchi K., Oikawa K., Uemaetomari I., Tsuji S., Wada T., Hara A. Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea. Hear. Res. 2003;180:51–56. [PubMed] [Google Scholar]

58. Tabuchi K., Murashita H., Tobita T., Oikawa K., Tsuji S., Uemaetomari I., Hara A. Dehydroepiandrosterone sulfate reduces acoustic injury of the guinea-pig cochlea. J. Pharmacol. Sci. 2005;99:191–194. [PubMed] [Google Scholar]

59. Gewert K., Sundler R. Dexamethasone down-regulates the 85 kDa phospholipase A2 in mouse macrophages and suppresses its activation. Biochem. J. 1995;307:499–504. [PMC free article] [PubMed] [Google Scholar]

60. Brune K. Safety of anti-inflammatory treatment--new ways of thinking. Rheumatology (Oxford) 2004;43(Suppl. 1):i16–i20. doi: 10.1093/rheumatology/keh204. [PubMed] [CrossRef] [Google Scholar]

61. Jung T.T., Park Y.M., Miller S.K., Rozehnal S., Woo H.Y., Baer W. Effect of exogenous arachidonic acid metabolites applied on round window membrane on hear­ing and their levels in the perilymph. Acta Oto-laryngol. 1992;493:171–176. [PubMed] [Google Scholar]

62. Umemura K., Asai Y., Uematsu T., Nakashima M. Role of thromboxane A2 in a microcirculation disorder of the rat inner ear. Eur. Arch. Otorhinolaryngol. 1993;250:342–344. [PubMed] [Google Scholar]

63. Clerici W.J., Hensley K., DiMartino D.L., Butterfield D.A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear. Res. 1996;98:116–124. [PubMed] [Google Scholar]

64. Choung Y.H., Taura A., Pak K., Choi S.J., Masuda M., Ryan A.F. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience. 2009;161:214–226. [PMC free article] [PubMed] [Google Scholar]

65. Yamane H., Nakai Y., Takayama M., Konishi K., Iguchi H., Nakagawa T., Shibata S., Kato A., Sunami K., Kawakatsu C. The emergence of free radicals after acoustic trauma and strial blood flow. Acta Oto-laryngol. 1995;519:87–92. [PubMed] [Google Scholar]

66. Yamasoba T., Nuttall A.L., Harris C., Raphael Y., Miller J.M. Role of gluthathione in protection against noise-induced hearing loss. Brain Res. 1998;784:82–90. [PubMed] [Google Scholar]

67. Ohlemiller K.K., Wright J.S., Dugan L.L. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol. Neurootol. 1999a;4:229–236. doi: 10.1159/000013846. [PubMed] [CrossRef] [Google Scholar]

68. Murashita H., Tabuchi K., Hoshino T., Tsuji S., Hara A. The effects of tempol, 3-aminobenzamide and nitric oxide synthase inhibitors on acoustic injury of the mouse cochlea. Hear. Res. 2006;214:1–6. [PubMed] [Google Scholar]

69. Ohlemiller K.K., Dugan L.L. Elevation of reactive oxygen species following ischemia-reperfusion in mouse cochlea observed in vivo. Audiol. Neurootol. 1999;4:219–228. doi: 10.1159/000013845. [PubMed] [CrossRef] [Google Scholar]

70. Tabuchi K., Ito Z., Wada T., Hara A., Kusakari J. The effect of mannitol upon cochlear dysfunction induced by transient local anoxia. Hear. Res. 1998;126:28–36. doi: 10.1016/S0378-5955(98)00142-7. [PubMed] [CrossRef] [Google Scholar]

71. Tabuchi K., Tsuji S., Fujihira K., Oikawa K., Hara A., Kusakari J. Outer hair cells functionally and structurally deteriorate during reperfusion. Hear. Res. 2002;173:153–163. [PubMed] [Google Scholar]

72. Staecker H., Zheng Q.Y., Van De Water T.R. Oxidative stress in aging in the C57B16/J mouse cochlea. Acta Oto-laryngol. 2001;121:666–672. doi: 10.1080/00016480152583593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Dinis T.C., Maderia V.M., Almeida L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994;315:161–169. doi: 10.1006/abbi.1994.1485. [PubMed] [CrossRef] [Google Scholar]

74. Yu W.K., Wells P.G. Evidence for lipoxygenase-catalyzed bioactivation of phenytoin to a teratogenic reac­tive intermediate: in vivo studies using linoleic acid-depen­dent soybean lipoxygenase, and in vivo studies using pregnant CD-1 mice. Toxicol. Appl. Pharmacol. 1995;131:1–12. doi: 10.1006/taap.1995.1040. [PubMed] [CrossRef] [Google Scholar]

75. Chernov M.V., Stark G.R. The p53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate. Oncogene. 1997;14:2503–2510. [PubMed] [Google Scholar]

76. Yin M.J., Yamamoto Y., Gaynor R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80. [PubMed] [Google Scholar]

77. Masuda M., Nagashima R., Kanzaki S., Fujioka M., Ogita K., Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res. 2006;1068:237–247. doi: 10.1016/j.brainres.2005.11.020. [PubMed] [CrossRef] [Google Scholar]

78. Maldonado V., Melendez-Zajgla J., Ortega A. Modulation of NF-kappa B, and Bcl-2 in apoptosis induced by cisplatin in HeLa cells. Mutat. Res. 1997;381:67–75. [PubMed] [Google Scholar]

79. Jiang H., Sha S.H., Schacht J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J. Neurosci. Res. 2005;79:644–651. doi: 10.1002/jnr.20392. [PubMed] [CrossRef] [Google Scholar]

Does Advil increase tinnitus?

A study of more than 69,000 women found that, in addition to aspirin and Tylenol (acetaminophen), nonsteroidal anti-inflammatory drugs (NSAIDs) such as Advil and Motrin (ibuprofen) also raised the risk of tinnitus.

Is tinnitus from ibuprofen temporary?

Analgesics are taken by millions of people annually, without causing tinnitus. However, long-term moderate and high dose uses are both associated with this effect. Tinnitus caused by NSAIDs and acetaminophen is usually temporary and resolves once the medication is stopped. However, persistent tinnitus can also occur.

What medications can cause high pitched ringing in ears?

Medications known to cause tinnitus include nonsteroidal anti-inflammatory drugs (NSAIDs) and certain antibiotics, cancer drugs, water pills (diuretics), antimalarial drugs and antidepressants.

Can ibuprofen aggravate tinnitus?

Pain Medications - Anti inflammatory drugs like Aspirin, Ibuprofen and Naproxen - (NSAIDS) can cause tinnitus. The ringing can be worse at higher doses with NSAIDS.