How does the endocrine system work with the skeletal system

  • Sommerfeldt, D. W. & Rubin, C. T. Biology of bone and how it orchestrates the form and function of the skeleton. Eur. Spine J. 10, S86–S95 (2001).

    Article  PubMed Central  PubMed  Google Scholar 

  • Bronner, F. Extracellular and intracellular regulation of calcium homeostasis. Sci. World J. 1, 919–925 (2001).

    Article  CAS  Google Scholar 

  • Askmyr, M., Quach, J. & Purton, L. E. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48, 115–120 (2011).

    Article  PubMed  Google Scholar 

  • Abarrategi, A. et al. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J. Exp. Med. 215, 729–743 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajimura, D. et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 17, 901–915 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karsenty, G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4, 341–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lecka-Czernik, B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia 60, 1163–1169 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrukhova, O., Streicher, C., Zeitz, U. & Erben, R. G. Fgf23 and parathyroid hormone signaling interact in kidney and bone. Mol. Cell Endocrinol. 436, 224–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Xing, J., Long, C. L., Peng, Q. & Humphrey, M. B. DOK3 modulates bone remodeling by negatively regulating osteoclastogenesis and positively regulating osteoblastogenesis. J. Bone Min. Res. 32, 2207–2218 (2017).

    Article  CAS  Google Scholar 

  • Kalbasi Anaraki, P. et al. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts. J. Bone Min. Res. 30, 379–388 (2015).

    Article  CAS  Google Scholar 

  • Matsuoka, K., Park, K. A., Ito, M., Ikeda, K. & Takeshita, S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J. Bone Min. Res. 29, 1522–1530 (2014).

    Article  CAS  Google Scholar 

  • Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Min. Res. 19, 429–435 (2004).

    Article  CAS  Google Scholar 

  • Gupte, A. A. et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology 155, 4697–4705 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du, J. et al. Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine 53, 701–709 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Mizokami, A. et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS ONE 8, e57375 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otani, T. et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27, 532–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Booth, S. L., Centi, A., Smith, S. R. & Gundberg, C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nat. Rev. Endocrinol. 9, 43–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Hauschka, P. V., Lian, J. B., Cole, D. E. & Gundberg, C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ishida, M. & Amano, S. Osteocalcin fragment in bone matrix enhances osteoclast maturation at a late stage of osteoclast differentiation. J. Bone Min. Metab. 22, 415–429 (2004).

    Article  CAS  Google Scholar 

  • Nikel, O., Poundarik, A. A., Bailey, S. & Vashishth, D. Structural role of osteocalcin and osteopontin in energy dissipation in bone. J. Biomech. 80, 45–52 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu, C. M. et al. High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab. 29, 1334–1349.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malashkevich, V. N., Almo, S. C. & Dowd, T. L. X-ray crystal structure of bovine 3 Glu-osteocalcin. Biochemistry 52, 8387–8392 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Rached, M.-T. et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Investig. 120, 357–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Guedes, J. A. C., Esteves, J. V., Morais, M. R., Zorn, T. M. & Furuya, D. T. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone. Bone 115, 68–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Levinger, I. et al. The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos. Int. 27, 653–663 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Lin, X. et al. Recombinant uncarboxylated osteocalcin per se enhances mouse skeletal muscle glucose uptake in both extensor digitorum longus and soleus muscles. Front Endocrinol. 8, 330 (2017).

    Article  Google Scholar 

  • Pi, M. et al. Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157, 1866–1880 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Gurmaches, J. et al. Brown Fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195–209.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Gao, J. et al. The PLC/PKC/Ras/MEK/Kv channel pathway is involved in uncarboxylated osteocalcin-regulated insulin secretion in rats. Peptides 86, 72–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mizokami, A. et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69, 68–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B. et al. Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway. Endocrinology 154, 1055–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Guo, Q. et al. Undercarboxylated osteocalcin reverts insulin resistance induced by endoplasmic reticulum stress in human umbilical vein endothelial cells. Sci. Rep. 7, 46 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung, C. H. et al. The preventive effect of uncarboxylated osteocalcin against free fatty acid-induced endothelial apoptosis through the activation of phosphatidylinositol 3-kinase/Akt signaling pathway. Metabolism 62, 1250–1257 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Sun, X. & Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 30, 414–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hill, H. S. et al. Carboxylated and uncarboxylated forms of osteocalcin directly modulate the glucose transport system and inflammation in adipocytes. Horm. Metab. Res. 46, 341–347 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clemens, T. L. & Karsenty, G. The osteoblast: an insulin target cell controlling glucose homeostasis. J. Bone Min. Res. 26, 677–680 (2011).

    Article  CAS  Google Scholar 

  • De Toni, L. et al. Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 5, 664–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Otani, T. et al. Osteocalcin triggers Fas/FasL-mediated necroptosis in adipocytes via activation of p300. Cell Death Dis. 9, 1194 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Q. et al. T Cell factor 7 (TCF7)/TCF1 feedback controls osteocalcin signaling in brown adipocytes independent of the Wnt/β-catenin pathway. Mol. Cell Biol. 38, e00562–17 (2018).

    PubMed Central  PubMed  Google Scholar 

  • Mottillo, E. P., Ramseyer, V. D. & Granneman, J. G. SERCA2b cycles its way to UCP1-independent thermogenesis in beige fat. Cell Metab. 27, 7–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Deppermann, C. et al. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J. Exp. Med. 217, e20190723 (2020).

  • Wellendorph, P. & Bräuner-Osborne, H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335, 37–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ackerman, S. D. et al. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J. Exp. Med. 215, 941–961 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pi, M., Wu, Y. & Quarles, L. D. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J. Bone Min. Res. 26, 1680–1683 (2011).

    Article  CAS  Google Scholar 

  • Fu, A., Eberhard, C. E. & Screaton, R. A. Role of AMPK in pancreatic beta cell function. Mol. Cell Endocrinol. 366, 127–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ardestani, A., Lupse, B., Kido, Y., Leibowitz, G. & Maedler, K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab. 27, 314–331 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Karmaus, P. W. F. et al. Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis. J. Exp. Med. 214, 2629–2647 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Pi, M., Nishimoto, S. K. & Quarles, L. D. GPRC6A: Jack of all metabolism (or master of none). Mol. Metab. 6, 185–193 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diegel, C. R. et al. An osteocalcin-deficient mouse strain without endocrine abnormalities. PLoS Genet. 16, e1008361 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, H. J. et al. Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 34, e147 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  • Pollock, N. K. et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J. Clin. Endocrinol. Metab. 96, E1092–E1099 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  • Choudhury, A. B., Sarkar, P. D., Sakalley, D. K. & Petkar, S. B. Role of adiponectin in mediating the association of osteocalcin with insulin resistance and type 2 diabetes: a cross sectional study in pre- and post-menopausal women. Arch. Physiol. Biochem. 120, 73–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Martin, T. J. & Sims, N. A. RANKL/OPG; Critical role in bone physiology. Rev. Endocr. Metab. Disord. 16, 131–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Boyce, B. F. & Xing, L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 9, S1 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J. Bone Min. Res. 29, 338–347 (2014).

    Article  CAS  Google Scholar 

  • Kondegowda, N. G. et al. Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-κB ligand pathway. Cell Metab. 22, 77–85 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sacco, F. et al. Phosphoproteomics reveals the GSK3-PDX1 axis as a key pathogenic signaling node in diabetic islets. Cell Metab. 29, 1422–1432.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Musialik, K., Szulińska, M., Hen, K., Skrypnik, D. & Bogdański, P. The relation between osteoprotegerin, inflammatory processes, and atherosclerosis in patients with metabolic syndrome. Eur. Rev. Med Pharm. Sci. 21, 4379–4385 (2017).

    CAS  Google Scholar 

  • Monseu, M. et al. Osteoprotegerin levels are associated with liver fat and liver markers in dysmetabolic adults. Diabetes Metab. 42, 364–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Cappel, D. A. et al. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab. 29, 1291–1305.e8 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bilgir, O. et al. Relationship between insulin resistance, hs-CRP, and body fat and serum osteoprotegerin/RANKL in prediabetic patients. Minerva Endocrinol. 43, 19–26 (2018).

    PubMed  Google Scholar 

  • Suliburska, J. et al. The association of insulin resistance with serum osteoprotegerin in obese adolescents. J. Physiol. Biochem 69, 847–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Stekovic, S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 30, 462–476.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ou, D. et al. TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction. Diabetologia 45, 1678–1688 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Chamoux, E., Houde, N., L’Eriger, K. & Roux, S. Osteoprotegerin decreases human osteoclast apoptosis by inhibiting the TRAIL pathway. J. Cell Physiol. 216, 536–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Vaccarezza, M., Bortul, R., Fadda, R. & Zweyer, M. Increased OPG expression and impaired OPG/TRAIL ratio in the aorta of diabetic rats. Med. Chem. 3, 387–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, J. G. & Rorsman, P. β cell dysfunction in type 2 diabetes: drained of energy? Cell Metab. 29, 1–2 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Schrader, J. et al. Cytokine-induced osteoprotegerin expression protects pancreatic beta cells through p38 mitogen-activated protein kinase signalling against cell death. Diabetologia 50, 1243–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 28, 547–556.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lacombe, J., Karsenty, G. & Ferron, M. In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol. Metab. 2, 498–504 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niu, Y. et al. Plasma osteoprotegerin levels are inversely associated with nonalcoholic fatty liver disease in patients with type 2 diabetes: a case-control study in China. Metabolism 65, 475–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ayaz, T. et al. The relation between carotid intima media thickness and serum osteoprotegerin levels in nonalcoholic fatty liver disease. Metab. Syndr. Relat. Disord. 12, 283–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  • D’Amelio, P., Isaia, G., Fau, -, Isaia, G. C. & Isaia, G. C. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. Expert Rev. Cardiovasc Ther. 4, 801–811 (2006).

    Article  Google Scholar 

  • Kiechl, S. et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y. et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franzén, A. & Heinegård, D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J. 232, 715–724 (1985).

    Article  PubMed Central  PubMed  Google Scholar 

  • Gimba, E. R. & Tilli, T. M. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 331, 11–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Luukkonen, J. et al. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem. Cell Biol. 151, 475–487 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oldberg, A., Franzén, A. & Heinegård, D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl Acad. Sci. USA 83, 8819–8823 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K. X. & Denhardt, D. T. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19, 333–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ge, Q. et al. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci. Rep. 7, 40253 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishijima, M. et al. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J. Exp. Med. 193, 399–404 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Q. et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal. Stem Cells 32, 327–337 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman, J. et al. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS ONE 5, e13959 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue, H. et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat. Med. 10, 168–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kiefer, F. W. et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes 59, 935–946 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kon, S. et al. Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J. Exp. Med. 205, 25–33 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nuñez-Garcia, M. et al. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver. J. Lipid Res. 58, 1903–1915 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeyda, M. et al. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 152, 2219–2227 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Arafat, H. A. et al. Osteopontin protects the islets and beta-cells from interleukin-1 beta-mediated cytotoxicity through negative feedback regulation of nitric oxide. Endocrinology 148, 575–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ma, D. & Leulier, F. A new transkingdom dimension to NO signaling. Cell Metab. 29, 513–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wendt, A. et al. Osteopontin affects insulin vesicle localization and Ca2+ homeostasis in pancreatic beta cells from female mice. PLoS ONE 12, e0170498 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad, R. et al. Interaction of osteopontin with IL-18 in obese individuals: implications for insulin resistance. PLoS ONE 8, e63944 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barchetta, I. et al. Increased circulating osteopontin levels in adult patients with type 1 diabetes mellitus and association with dysmetabolic profile. Eur. J. Endocrinol. 174, 187–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Carbone, F. et al. Serum levels of osteopontin predict diabetes remission after bariatric surgery. Diabetes Metab. 45, 356–362 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kiefer, F. W. et al. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology 149, 1350–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Talat, M. A. et al. The role of osteopontin in the pathogenesis and complications of type 1 diabetes mellitus in children. J. Clin. Res. Pediatr. Endocrinol. 8, 399–404 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, H. et al. Beta cell dedifferentiation induced by IRE1α deletion prevents type 1 diabetes. Cell Metab. 31, 822–836.e5 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marciano, R. et al. Association of alleles at polymorphic sites in the Osteopontin encoding gene in young type 1 diabetic patients. Clin. Immunol. 131, 84–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Warshauer, J. T., Bluestone, J. A. & Anderson, M. S. New frontiers in the treatment of type 1 diabetes. Cell Metab. 31, 46–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  • You, J. S. et al. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol. Med. Rep. 8, 579–584 (2013).

    Article  PubMed  Google Scholar 

  • Israel, D. I. et al. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 13, 291–300 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Urist, M. R. Bone: formation by autoinduction. Science 150, 893–899 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Celeste, A. J. et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc. Natl Acad. Sci. USA 87, 9843–9847 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Zhao, M. & Mundy, G. R. Bone morphogenetic proteins. Growth Factors 22, 233–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Nohno, T. et al. Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J. Biol. Chem. 270, 22522–22526 (1995).

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke, P., Miyazono, K. & Heldin, C. H. Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr. Opin. Cell Biol. 8, 139–145 (1996).

    Article  PubMed  Google Scholar 

  • Ebara, S. & Nakayama, K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine 27, S10–S15 (2002).

    Article  PubMed  Google Scholar 

  • Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wang, P. et al. Combined inhibition of DYRK1A, SMAD, and trithorax pathways synergizes to induce robust replication in adult human beta cells. Cell Metab. 29, 638–652.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lu, Q. et al. GDF11 inhibits bone formation by activating Smad2/3 in bone marrow mesenchymal stem cells. Calcif. Tissue Int. 99, 500–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Guo, X. & Wang, X.-F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lowery, J. W. & Rosen, V. The BMP pathway and its inhibitors in the skeleton. Physiol. Rev. 98, 2431–2452 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. et al. MiR-497195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat. Commun. 8, 16003 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda, Y., Tsuji, K., Nifuji, A. & Noda, M. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J. Cell Biochem. 93, 337–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y. et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 32941–32949 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Elsen, M. et al. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am. J. Physiol. Cell Physiol. 306, C431–C440 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Fabbiano, S. et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Gustafson, B. et al. BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64, 1670–1681 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Hata, K. et al. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14, 545–555 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hino, J. et al. Overexpression of bone morphogenetic protein-3b (BMP-3b) in adipose tissues protects against high-fat diet-induced obesity. Int J. Obes. 41, 483–488 (2017).

    Article  CAS  Google Scholar 

  • Hoffmann, J. M. et al. BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue. Cell Rep. 20, 1038–1049 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Huang, H. et al. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA 106, 12670–12675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Choe, S. & Lee, D. K. BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochim. Biophys. Acta 1862, 1237–1246 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, E. A., Israel, D. I., Kelly, S. & Luxenberg, D. P. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9, 57–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Q. A. et al. Reversible de-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation. Cell Metab. 28, 282–288.e3 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, C. J. et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Investig. 125, 1509–1522 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, R. et al. The role of microRNAs in adipocyte differentiation. Front. Med. 7, 223–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, T., Singh, R. R., Gupta, S. & Surolia, A. Bone morphogenetic protein-7 (BMP-7) augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway. Biofactors 43, 195–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y. et al. Decreased circulating BMP-9 levels in patients with Type 2 diabetes is a signature of insulin resistance. Clin. Sci. 131, 239–246 (2017).

    Article  CAS  Google Scholar 

  • Schreiber, I. et al. BMPs as new insulin sensitizers: enhanced glucose uptake in mature 3T3-L1 adipocytes via PPARγ and GLUT4 upregulation. Sci. Rep. 7, 17192 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, M. et al. Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism. FASEB J. 33, 10077–10088 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. et al. New association of bone morphogenetic protein 4 concentrations with fat distribution in obesity and Exenatide intervention on it. Lipids Health Dis. 16, 70 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgson, J. et al. Characterization of GDF2 mutations and levels of BMP9 and BMP10 in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 201, 575–585 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vukicevic, S., Helder, M. N. & Luyten, F. P. Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J. Histochem. Cytochem. 42, 869–875 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kokubu, N., Tsujii, M., Akeda, K., Iino, T. & Sudo, A. BMP-7/Smad expression in dedifferentiated Schwann cells during axonal regeneration and upregulation of endogenous BMP-7 following administration of PTH (1–34). J. Orthop. Surg. 26, 2309499018812953 (2018).

  • Yamashita, K., Mikawa, S. & Sato, K. BMP3 expression in the adult rat CNS. Brain Res. 1643, 35–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Desroches-Castan, A. et al. Differential consequences of Bmp9 deletion on sinusoidal endothelial cell differentiation and liver fibrosis in 129/Ola and C57BL/6 mice. Cells 8, 1079 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  • Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ornitz, D. M. & Marie, P. J. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 29, 1463–1486 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo, Y., Ye, S., Li, X. & Lu, W. Emerging structure-function paradigm of endocrine FGFs in metabolic diseases. Trends Pharm. Sci. 40, 142–153 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Peng, M. et al. Developments in the study of gastrointestinal microbiome disorders affected by FGF19 in the occurrence and development of colorectal neoplasms. J. Cell Physiol. 235, 4060–4069 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Geller, S. et al. Tanycytes regulate lipid homeostasis by sensing free fatty acids and signaling to key hypothalamic neuronal populations via FGF21 secretion. Cell Metab. 30, 833–844.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, T., Nakatake, Y., Konishi, M. & Itoh, N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta. 1492, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Erben, R. G. Pleiotropic actions of FGF23. Toxicol. Pathol. 45, 904–910 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clinkenbeard, E. L. et al. Conditional deletion of murine Fgf23: interruption of the normal skeletal responses to phosphate challenge and rescue of genetic hypophosphatemia. J. Bone Miner. Res. 31, 1247–1257 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Hu, M. C. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438–3450 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strewler, G. J. Untangling klotho’s role in calcium homeostasis. Cell Metab. 6, 93–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Angelin, B., Larsson, T. E. & Rudling, M. Circulating fibroblast growth factors as metabolic regulators-a critical appraisal. Cell Metab. 16, 693–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Komaba, H. et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 92, 599–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaludjerovic, J. et al. Klotho expression in long bones regulates FGF23 production during renal failure. FASEB J. 31, 2050–2064 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hesse, M., Fröhlich, L. F., Zeitz, U., Lanske, B. & Erben, R. G. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 26, 75–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  • López, I. et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 80, 475–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 90, 985–996 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito, N. et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol. Cell. Endocrinol. 399, 208–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mirza, M. A. I. et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb. Vasc. Biol. 31, 219–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Aljohani, A. et al. Hepatic stearoyl CoA desaturase 1 deficiency increases glucose uptake in adipose tissue partially through the PGC-1α-FGF21 axis in mice. J. Biol. Chem. 294, 19475–19485 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Y., Lu, J., Nemati, R., Plank, L. D. & Murphy, R. Acute changes of bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes. Surg. 29, 3605–3621 (2019).

    Article  PubMed  Google Scholar 

  • Lan, T. et al. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mosialou, I. et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543, 385–390 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, J. et al. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol. 22, 1416–1426 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flower, D. R. Beyond the superfamily: the lipocalin receptors. Biochim Biophys. Acta 1482, 327–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jha, M. K. et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci. Biobehav Rev. 49, 135–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Adriaenssens, A. E. et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 30, 987–996.e6 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, H. et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J. Neurosci. 23, 7143–7154 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, H. et al. Lipocalin 2, a regulator of retinoid homeostasis and retinoid-mediated thermogenic activation in adipose tissue. J. Biol. Chem. 291, 11216–11229 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, H. et al. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59, 1376–1385 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, B. et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23, 193–209.e5 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y. et al. Lipocalin 2 regulates brown fat activation via a nonadrenergic activation mechanism. J. Biol. Chem. 289, 22063–22077 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamble, P. G. et al. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue. Mol. Cell Endocrinol. 427, 124–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Capulli, M. et al. A complex role for lipocalin 2 in bone metabolism: global ablation in mice induces osteopenia caused by an altered energy metabolism. J. Bone Min. Res. 33, 1141–1153 (2018).

    Article  CAS  Google Scholar 

  • Wang, W. et al. Elevated serum lipocalin 2 levels are associated with indexes of both glucose and bone metabolism in type 2 diabetes mellitus. Endokrynol. Pol. 69, 276–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  • van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collette, N. M. et al. Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev. Biol. 383, 90–105 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winkler, D. G. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, C. et al. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann. N. Y Acad. Sci. 1364, 62–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bullock, W. A. et al. Lrp4 mediates bone homeostasis and mechanotransduction through interaction with sclerostin in vivo. iScience 20, 205–215 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, W. et al. Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice. Open Biol. 9, 180262 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stolina, M. et al. Temporal changes in systemic and local expression of bone turnover markers during six months of sclerostin antibody administration to ovariectomized rats. Bone 67, 305–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Fijalkowski, I. et al. A novel domain-specific mutation in a sclerosteosis patient suggests a role of LRP4 as an anchor for sclerostin in human bone. J. Bone Min. Res. 31, 874–881 (2016).

    Article  CAS  Google Scholar 

  • Haynes, K. R. et al. Treatment of a mouse model of ankylosing spondylitis with exogenous sclerostin has no effect on disease progression. BMC Musculoskelet. Disord. 16, 368 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koide, M. et al. Bone formation is coupled to resorption via suppression of sclerostin expression by osteoclasts. J. Bone Min. Res. 32, 2074–2086 (2017).

    Article  CAS  Google Scholar 

  • Faienza, M. F. et al. High sclerostin and dickkopf-1 (DKK-1) serum levels in children and adolescents with type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 102, 1174–1181 (2017).

    Article  PubMed  Google Scholar 

  • Hie, M., Iitsuka, N., Otsuka, T. & Tsukamoto, I. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J. Mol. Med. 28, 455–462 (2011).

    CAS  PubMed  Google Scholar 

  • Daniele, G. et al. Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care 38, 1509–1517 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Yu, O. H. Y. et al. The association between sclerostin and incident type 2 diabetes risk: a cohort study. Clin. Endocrinol. 86, 520–525 (2017).

    Article  CAS  Google Scholar 

  • Kim, S. P. et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl Acad. Sci. USA 114, E11238–E11247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulzele, K. et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J. Bone Min. Res. 32, 373–384 (2017).

    Article  CAS  Google Scholar 

  • Hofmann, S., Bellmann-Sickert, K. & Beck-Sickinger, A. G. Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease. Biol. Chem. 400, 299–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, Y. Neuropeptide Y. Nihon. Rinsho. 63, S421–S424 (2005).

    Google Scholar 

  • Cedernaes, J. et al. Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. Cell Metab. 29, 1078–1091.e5 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ip, C. K. et al. Amygdala NPY circuits promote the development of accelerated obesity under chronic stress conditions. Cell Metab. 30, 111–128.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Z. Temporal control of appetite by AgRP Clocks. Cell Metab. 29, 1022–1023 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makhmutova, M., Rodriguez-Diaz, R. & Caicedo, A. A nervous breakdown that may stop autoimmune diabetes. Cell Metab. 31, 215–216 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, D. Y. et al. Neuropeptide Y mitigates ER stress-induced neuronal cell death by activating the PI3K-XBP1 pathway. Eur. J. Cell Biol. 97, 339–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fetissov, S. O., Kopp, J. & Hökfelt, T. Distribution of NPY receptors in the hypothalamus. Neuropeptides 38, 175–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Huang, L. et al. Actions of NPY, and its Y1 and Y2 receptors on pulsatile growth hormone secretion during the fed and fasted state. J. Neurosci. 34, 16309–16319 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, M. H. et al. Neuropeptide Y induces hematopoietic stem/progenitor cell mobilization by regulating matrix metalloproteinase-9 activity through Y1 receptor in osteoblasts. Stem Cells 34, 2145–2156 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Shin, M. K. et al. Elevated pentraxin 3 in obese adipose tissue promotes adipogenic differentiation by activating neuropeptide Y signaling. Front. Immunol. 9, 1790 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, K., Guan, H., Arany, E., Hill, D. J. & Cao, X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J. 22, 2452–2464 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Franklin, Z. J. et al. Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass. Diabetes Obes. Metab. 20, 599–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Khan, D., Vasu, S., Moffett, R. C., Irwin, N. & Flatt, P. R. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim. Biophys. Acta Gen. Subj. 1861, 749–758 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Loh, K., Herzog, H. & Shi, Y. C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 26, 125–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Igwe, J. C. et al. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J. Cell Biochem. 108, 621–630 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wee, N. K. Y. et al. Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism. Int J. Obes. 42, 1925–1938 (2018).

    Article  CAS  Google Scholar 

  • Wu, J. et al. Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Res 21, 74–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wee, N. K. Y. et al. Skeletal phenotype of the neuropeptide Y knockout mouse. Neuropeptides 73, 78–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lee, N. J. et al. NPY signalling in early osteoblasts controls glucose homeostasis. Mol. Metab. 4, 164–174 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kronenberg, H. M. PTHrP and skeletal development. Ann. N. Y Acad. Sci. 1068, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wysolmerski, J. J. Parathyroid hormone-related protein: an update. J. Clin. Endocrinol. Metab. 97, 2947–2956 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudeck, J. et al. Mast cells acquire MHCII from dendritic cells during skin inflammation. J. Exp. Med. 214, 3791–3811 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao, D. et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J. Clin. Investig. 115, 2402–2411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Cheng, Q., Wang, Y., Leung, P. S. & Mak, K. K. Hedgehog signaling in bone regulates whole-body energy metabolism through a bone-adipose endocrine relay mediated by PTHrP and adiponectin. Cell Death Differ. 24, 225–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Guthalu Kondegowda, N. et al. Parathyroid hormone-related protein enhances human ß-cell proliferation and function with associated induction of cyclin-dependent kinase 2 and cyclin E expression. Diabetes 59, 3131–3138 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horwitz, M. J. et al. Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. J. Clin. Endocrinol. Metab. 95, 1279–1287 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bukowska, J. et al. Bone marrow adipocyte developmental origin and biology. Curr. Osteoporos. Rep. 16, 312–319 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhansali, S. et al. Effect of mesenchymal stem cells transplantation on glycaemic profile & their localization in streptozotocin induced diabetic Wistar rats. Indian J. Med. Res. 142, 63–71 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhansali, S. et al. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev. 26, 471–481 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Rydén, M. et al. Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab. 22, 408–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, E. L. & Dixit, V. D. Bone marrow: an immunometabolic refuge during energy depletion. Cell Metab. 30, 621–623 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Metabolism in pluripotent stem cells and early mammalian development. Cell Metab. 27, 332–338 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Bone-derived exosomes. Curr. Opin. Pharm. 34, 64–69 (2017).

    Article  CAS  Google Scholar 

  • Kita, S., Maeda, N. & Shimomura, I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Investig. 129, 4041–4049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guay, C. et al. Lymphocyte-derived exosomal micrornas promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab. 29, 348–361.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Deng, L. et al. Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone 79, 37–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Lyu, H., Xiao, Y., Guo, Q., Huang, Y. & Luo, X. The role of bone-derived exosomes in regulating skeletal metabolism and extraosseous diseases. Front. Cell Dev. Biol. 8, 89 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun, W. et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2, 16015 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo, R. W. Y. et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 65, 336–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Huynh, N. et al. Characterization of regulatory extracellular vesicles from osteoclasts. J. Dent. Res 95, 673–679 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, D. et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 7, 10872 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori, M. A., Ludwig, R. G., Garcia-Martin, R., Brandão, B. B. & Kahn, C. R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30, 656–673 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baglio, S. R. et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6, 127 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su, T. et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano 13, 2450–2462 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Rong, X. et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res. Ther. 10, 98 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • AbuBakr, N., Haggag, T., Sabry, D. & Salem, Z. A. Functional and histological evaluation of bone marrow stem cell-derived exosomes therapy on the submandibular salivary gland of diabetic Albino rats through TGFβ/ Smad3 signaling pathway. Heliyon 6, e03789 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  • Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Malle, E. K. et al. Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity. J. Exp. Med. 212, 1239–1254 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, A. & Dixit, V. D. Energy sparing orexigenic inflammation of obesity. Cell Metab. 26, 10–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 127, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Laharrague, P. et al. Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. Eur. Cytokine Netw. 11, 634–639 (2000).

    CAS  PubMed  Google Scholar 

  • Sanchez-Lopez, E. et al. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production. Cell Metab. 29, 1350–1362.e7 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romas, E. et al. The role of gp130-mediated signals in osteoclast development: regulation of interleukin 11 production by osteoblasts and distribution of its receptor in bone marrow cultures. J. Exp. Med. 183, 2581–2591 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ishimi, Y. et al. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 145, 3297–3303 (1990).

    CAS  PubMed  Google Scholar 

  • Hardaway, A. L., Herroon, M. K., Rajagurubandara, E. & Podgorski, I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin. Exp. Metastasis 32, 353–368 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Saraiva, M. & O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Li, P. et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 167, 973–984.e12 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons, J. J. et al. ERBIN deficiency links STAT3 and TGF-β pathway defects with atopy in humans. J. Exp. Med. 214, 669–680 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Corre, J. et al. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J. Cell Physiol. 208, 282–288 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Cawthorn, W. P. et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20, 368–375 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rendina-Ruedy, E. & Rosen, C. J. Lipids in the bone marrow: an evolving perspective. Cell Metab. 31, 219–231 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Kricun, M. E. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet. Radio. 14, 10–19 (1985).

    Article  CAS  Google Scholar 

  • Tavassoli, M. Marrow adipose cells. Histochemical identification of labile and stable components. Arch. Pathol. Lab Med 100, 16–18 (1976).

    CAS  PubMed  Google Scholar 

  • Nishio, M. et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16, 394–406 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. V. & Scherer, P. E. Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93–100 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Scheller, E. L., Burr, A. A., MacDougald, O. A. & Cawthorn, W. P. Inside out: bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 5, 251–269 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gil-Campos, M., Cañete, R. R. & Gil, A. Adiponectin, the missing link in insulin resistance and obesity. Clin. Nutr. 23, 963–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T. & Kadowaki, T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 17, 185–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1111–1120.e3 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manieri, E. et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J. Exp. Med. 216, 1108–1119 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 31, 472–492 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Qi, Y. et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Uchihashi, K. et al. Organotypic culture of human bone marrow adipose tissue. Pathol. Int. 60, 259–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Berner, H. S. et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone 35, 842–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Dalamaga, M. et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 18, 29–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Hoggard, N. et al. Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem. Biophys. Res. Commun. 232, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Harris, R. B. S. Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta. 1842, 414–423 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Alfa, R. W. et al. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 27, 479 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 30, 706–719.e6 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller, G., Ertl, J., Gerl, M. & Preibisch, G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem. 272, 10585–10593 (1997).

    Article  PubMed  Google Scholar 

  • Laharrague, P. et al. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 12, 747–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Krings, A. et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50, 546–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Laharrague, P. et al. Regulation by cytokines of leptin expression in human bone marrow adipocytes. Horm. Metab. Res. 32, 381–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Münzberg, H. & Heymsfield, S. B. New insights into the regulation of leptin gene expression. Cell Metab. 29, 1013–1014 (2019).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Upadhyay, J., Farr, O. M. & Mantzoros, C. S. The role of leptin in regulating bone metabolism. Metabolism 64, 105–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Pramojanee, S. N., Phimphilai, M., Chattipakorn, N. & Chattipakorn, S. C. Possible roles of insulin signaling in osteoblasts. Endocr. Res. 39, 144–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fulzele, K. et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem. 282, 25649–25658 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. H. & Lee, N. K. Up-regulation of RANK expression via ERK1/2 by insulin contributes to the enhancement of osteoclast differentiation. Mol. Cells 40, 371–377 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimoaka, T. et al. Impairment of bone healing by insulin receptor substrate-1 deficiency. J. Biol. Chem. 279, 15314–15322 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Conte, C., Epstein, S. & Napoli, N. Insulin resistance and bone: a biological partnership. Acta Diabetol. 55, 305–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology 157, 4094–4103 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mera, P. et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 25, 218 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L. & Carmeliet, G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96, 365–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Hochberg, Z., Tiosano, D. & Even, L. Calcium therapy for calcitriol-resistant rickets. J. Pediatr. 121, 803–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Erben, R. G. et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol. Endocrinol. 16, 1524–1537 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi, Y. et al. VDR in osteoblast-lineage cells primarily mediates vitamin D treatment-induced increase in bone mass by suppressing bone resorption. J. Bone Min. Res. 32, 1297–1308 (2017).

    Article  CAS  Google Scholar 

  • Matthews, D. G., D’Angelo, J., Drelich, J. & Welsh, J. Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density. J. Steroid Biochem. Mol. Biol. 164, 299–308 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Rosenstreich, S. J., Rich, C. & Volwiler, W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J. Clin. Investig. 50, 679–687 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, M. A. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem Mol. Biol. 165, 369–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Blumberg, J. M. et al. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem. 281, 11205–11213 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi, C. J. et al. 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration. Eur. J. Nutr. 54, 1001–1012 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Sun, X. & Zemel, M. B. Role of uncoupling protein 2 (UCP2) expression and 1alpha, 25-dihydroxyvitamin D3 in modulating adipocyte apoptosis. FASEB J. 18, 1430–1432 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Eshraghian, A. Bone metabolism in non-alcoholic fatty liver disease: vitamin D status and bone mineral density. Minerva Endocrinol. 42, 164–172 (2017).

    PubMed  Google Scholar 

  • Pittas, A. G., Harris, S. S., Stark, P. C. & Dawson-Hughes, B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 30, 980–986 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. et al. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R. Int J. Mol. Med. 37, 284–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 11, 161–171 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrahnas, C. et al. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone 93, 146–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Jilka, R. L. et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Investig. 104, 439–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esen, E., Lee, S.-Y., Wice, B. M. & Long, F. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J. Bone Min. Res. 30, 1959–1968 (2015).

    Article  CAS  Google Scholar 

  • Yamaguchi, M. Effect of parathyroid hormone on the increase in serum glucose and insulin levels after a glucose load to thyroparathyroidectomized rats. Endocrinol. Jpn 26, 353–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, S., Sasase, T., Ohta, T., Sato, E. & Matsushita, M. Parathyroid hormone (1-34) improves bone mineral density and glucose metabolism in Spontaneously Diabetic Torii-Lepr(fa) rats. J. Vet. Med. Sci. 74, 103–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Chiu, K. C. et al. Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism 49, 1501–1505 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Heuck, C. C. & Ritz, E. Does parathyroid hormone play a role in lipid metabolism? Contrib. Nephrol. 20, 118–128 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Lacour, B., Basile, C., Drüeke, T. & Funck-Brentano, J. L. Parathyroid function and lipid metabolism in the rat. Min. Electrolyte Metab. 7, 157–165 (1982).

    CAS  Google Scholar 

  • Larsson, S., Jones, H. A., Göransson, O., Degerman, E. & Holm, C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cell Signal 28, 204–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, M. E. et al. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J. Exp. Med. 214, 1029–1047 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauvais-Jarvis, F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 22, 24–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Jia, M., Dahlman-Wright, K. & Gustafsson, J.-Å. Estrogen receptor alpha and beta in health and disease. Best. Pr. Res Clin. Endocrinol. Metab. 29, 557–568 (2015).

    Article  CAS  Google Scholar 

  • Brown, L. M., Gent, L., Davis, K. & Clegg, D. J. Metabolic impact of sex hormones on obesity. Brain Res. 1350, 77–85 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voisin, D. L., Simonian, S. X. & Herbison, A. E. Identification of estrogen receptor-containing neurons projecting to the rat supraoptic nucleus. Neuroscience 78, 215–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 29, 1232 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eckel, R. H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N. Engl. J. Med. 320, 1060–1068 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Cooke, P. S. & Naaz, A. Role of estrogens in adipocyte development and function. Exp. Biol. Med. 229, 1127–1135 (2004).

    Article  CAS  Google Scholar 

  • Gorres, B. K., Bomhoff, G. L., Morris, J. K. & Geiger, P. C. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake. J. Physiol. 589, 2041–2054 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi, M. et al. Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab. 29, 627–637.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kondoh, S. et al. Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice. Bone 60, 68–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Novack, D. V. Estrogen and bone: osteoclasts take center stage. Cell Metab. 6, 254–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Streicher, C. et al. Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep. 7, 6460 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).

    Article  PubMed  Google Scholar 

  • Schwartz, A. V. et al. Older women with diabetes have an increased risk of fracture: a prospective study. J. Clin. Endocrinol. Metab. 86, 32–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. L., Paggiosi, M. A., Eastell, R. & Walsh, J. S. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J. Bone Min. Res 30, 920–928 (2015).

    Article  Google Scholar 

  • Sornay-Rendu, E., Boutroy, S., Vilayphiou, N., Claustrat, B. & Chapurlat, R. D. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J. Bone Min. Res 28, 1679–1687 (2013).

    Article  CAS  Google Scholar 

  • Driessler, F. & Baldock, P. A. Hypothalamic regulation of bone. J. Mol. Endocrinol. 45, 175–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. Y. et al. Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3β/β-catenin signaling in mice. Bone 64, 147–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Boskey, A. L. & Coleman, R. Aging and bone. J. Dent. Res 89, 1333–1348 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grandl, G. & Wolfrum, C. Adipocytes at the core of bone function. Cell Stem Cell 20, 739–740 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Benedetti, M. G., Furlini, G., Zati, A. & Letizia Mauro, G. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed. Res. Int. 2018, 4840531 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  • Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duan, P., Yang, M., Wei, M., Liu, J. & Tu, P. Serum osteoprotegerin is a potential biomarker of insulin resistance in chinese postmenopausal women with prediabetes and type 2 diabetes. Int J. Endocrinol. 2017, 8724869 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ndip, A., Wilkinson, F. L., Jude, E. B., Boulton, A. J. M. & Alexander, M. Y. RANKL-OPG and RAGE modulation in vascular calcification and diabetes: novel targets for therapy. Diabetologia 57, 2251–2260 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Cypess, A. M., Haft, C. R., Laughlin, M. R. & Hu, H. H. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 20, 408–415 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao, Q. et al. Wnt/β-catenin signaling in osteoblasts regulates global energy metabolism. Bone 97, 175–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wang, P. et al. Osthole promotes bone fracture healing through activation of BMP signaling in chondrocytes. Int J. Biol. Sci. 13, 996–1007 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yee, C. S. et al. Conditional deletion of Sost in MSC-derived lineages identifies specific cell-type contributions to bone mass and B-cell development. J. Bone Min. Res 33, 1748–1759 (2018).

    Article  CAS  Google Scholar 

  • How does the endocrine work with the skeletal system?

    Answer and Explanation: The skeletal system interacts with the endocrine system because the endocrine system produces hormones that control the skeletal system. The endocrine system consists of glands that produce small chemical messengers called hormones.

    How does the endocrine system work with the skeletal system to maintain homeostasis?

    The endocrine system controls the release of parathyroid hormone that triggers osteoclasts to breakdown (resorb) bone and release calcium into the blood to maintain homeostasis.

    How does the endocrine system work with other body systems?

    Endocrine glands release hormones into the bloodstream. This lets the hormones travel to cells in other parts of the body. The endocrine hormones help control mood, growth and development, the way our organs work, metabolism , and reproduction. The endocrine system regulates how much of each hormone is released.

    How does endocrine system work with nervous system?

    For one, the endocrine system uses chemical signaling (hormones, produced by glands) while the nervous system uses electrical signaling (neural impulses). The signal transmission of the nervous system is fast because neurons are interconnected, but the functions are more short-lived.

    Toplist

    Latest post

    TAGs