Why is my scalp itching so bad

1. Bernhard JD. The itchy scalp and other pruritic curiosities. Semin Dermatol. 1995;14:326–9. [PubMed] [Google Scholar]

2. Weisshaar E, Dalgard F. Epidemiology of itch: adding to the burden of skin morbidity. Acta Derm Venereol. 2009;89:339–50. [PubMed] [Google Scholar]

3. Misery L, Sibaud V, Ambronati M, Macy G, Boussetta S, Taieb C. Sensitive scalp: does this condition exist? An epidemiological study. Contact Dermatitis. 2008;58:234–8. [PubMed] [Google Scholar]

4. T-J Goon A, Yosipovitch G, Chan YH, Goh CL. Clinical characteristics of generalized idiopathic pruritus in patients from a tertiary referral center in Singapore. Int J Dermatol. 2007;46:1023–6. [PubMed] [Google Scholar]

5. Ferm I, Sterner M, Wallengren J. Somatic and psychiatric comorbidity in patients with chronic pruritus. Acta Derm Venereol. 2010;90:395–400. [PubMed] [Google Scholar]

6. Ständer S, Weisshaar E, Mettang T, et al. Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol. 2007;87:291–4. [PubMed] [Google Scholar]

7. O’Neill JL, Chan Y-H, Rapp SR, Yosipovitch G. Preview of article: Differences in Itch Characteristics Between Psoriasis and Atopic Dermatitis Patients: Results of a Web-based Questionnaire. Acta Derm Venereol. 2011 Apr 29; DOI: 10.2340/00015555-1126. [Epub ahead of print] [PubMed] [Google Scholar]

8. Chieregato C, Zini A, Barba A, Magnanini M, Rosina P. Lichen planopilaris: report of 30 cases and review of the literature. Int J Dermatol. 2003;42:342–5. [PubMed] [Google Scholar]

9. Cevasco NC, Bergfeld WF, Remzi BK, de Knott HR. A case-series of 29 patients with lichen planopilaris: The Cleveland Clinic foundation experience on evaluation, diagnosis, and treatment. J Am Acad Dermatol. 2007;57:47–53. [PubMed] [Google Scholar]

10. Samrao A, Chew AL, Price V. Frontal fibrosing alopecia: a clinical review of 36 patients. Br J Dermatol. 2010;163:1296–300. [PubMed] [Google Scholar]

11. Whiting DA, Olsen EA. Central centrifugal cicatricial alopecia. Dermatol Ther. 2008;21:268–78. [PubMed] [Google Scholar]

12. Abdel-Hamid IA, Agha SA, Moustafa YM, El-Labban AM. Pityriasis amiantacea: a clinical and etiopathologic study of 85 patients. Int J Dermatol. 2003;42:260–4. [PubMed] [Google Scholar]

13. Otberg N, Kang H, Alzolibani AA, Shapiro J. Folliculitis decalvans. Dermatol Ther. 2008;21:238–44. [PubMed] [Google Scholar]

14. Chen AY, Janik MP, Moad JC, Rubin MB. Multiple papules and nodules of the scalp. Angiolymphoid hyperplasia with eosinophilia. Arch Dermatol. 2010;146:911–6. [PubMed] [Google Scholar]

15. Scribner M. Diabetes and pruritus of the scalp. JAMA. 1977;237:1559. [PubMed] [Google Scholar]

16. Hoss D, Segal S. Scalp dysesthesia. Arch Dermatol. 1998;134:327–30. [PubMed] [Google Scholar]

18. Oaklander AL. Neuropathic pruritus following Wallenberg syndrome. Neurology. 2009;73:1605. [PubMed] [Google Scholar]

19. Darken RS, Bogitch R, Leonard J, et al. Brainstem glioma presenting as pruritus in children with neurofibromatosis-1. J Pediatr Hematol Oncol. 2009;31:972–6. [PubMed] [Google Scholar]

20. Tilstra JS, Prevost N, Khera P, English JC., 3rd Scalp dermatomyositis revisited. Arch Dermatol. 2009;145:1062–3. [PubMed] [Google Scholar]

21. Shirani Z, Kucenic MJ, Carroll CL, et al. Pruritus in adult dermatomyositis. Clin Exp Dermatol. 2004;29:273–6. [PubMed] [Google Scholar]

22. McCauley CS, Blumenthal MS. Dobutamine and pruritus of the scalp. Ann Intern Med. 1986;105:966. [PubMed] [Google Scholar]

23. Grosshans E, Asch PH. Eosinophilic arteritis of the scalp. Ann Dermatol Venereol. 2001;128:545–8. [PubMed] [Google Scholar]

24. Piérard-Franchimont C, Hermanns JF, Degreef H, Piérard GE. From axioms to new insights into dandruff. Dermatology. 2000;200:93–8. [PubMed] [Google Scholar]

25. DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson TL., Jr Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc. 2005;10:295–7. [PubMed] [Google Scholar]

26. Gloor M. Skin surface lipids. Physiologic function – influence of various dermatoses – pharmacologically induced changes. Hautarzt. 1975;26:6–10. [PubMed] [Google Scholar]

27. Kesavan S, Holland KT, Ingham E. The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med Mycol. 2000;38:239–47. [PubMed] [Google Scholar]

28. Kerr K, Schwartz JR, Filloon T, et al. Scalp Stratum Corneum Histamine Levels: Novel Sampling Method Reveals Association with Itch Resolution in Dandruff/Seborrhoeic Dermatitis Treatment. Acta Derm Venereol. 2011 Feb 21; doi: 10.2340/00015555-1073. [Epub ahead of print] [PubMed] [Google Scholar]

29. Prignano F, Ricceri F, Pescitelli L, Lotti T. Itch in psoriasis: epidemiology, clinical aspects and treatment options. Clin Cosmet Investig Dermatol. 2009;19:9–13. [PMC free article] [PubMed] [Google Scholar]

30. Assouly P, Reygagne P. Lichen planopilaris: update on diagnosis and treatment. Semin Cutan Med Surg. 2009;28:3–10. [PubMed] [Google Scholar]

31. McMichael AJ. Hair and scalp disorders in ethnic populations. Dermatol Clin. 2003;21:629–44. [PubMed] [Google Scholar]

32. Oaklander AL, Cohen SP, Raju SV. Intractable postherpetic itch and cutaneous deafferentation after facial shingles. Pain. 2002;96:9–12. [PubMed] [Google Scholar]

33. Oaklander AL, Bowsher D, Galer B, Haanpää M, Jensen MP. Herpes zoster itch: preliminary epidemiologic data. J Pain. 2003;4:338–43. [PubMed] [Google Scholar]

34. Oaklander AL. Mechanisms of pain and itch caused by herpes zoster (shingles) J Pain. 2008;9:S10–8. [PubMed] [Google Scholar]

35. Ross SE, Mardinly AR, McCord AE, et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron. 2010;25(65):886–98. [PMC free article] [PubMed] [Google Scholar]

36. Cevikbas F, Steinhoff M, Ikoma A. Role of Spinal Neurotransmitter Receptors in Itch: New Insights into Therapies and Drug Development. CNS Neurosci Ther. 2010 Oct 15; doi: 10.1111/j.1755-5949.2010.00201.x. [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

37. Farage MA. Perceptions of sensitive skin: changes in perceived severity and associations with environmental causes. Contact Dermatitis. 2008;59:226–32. [PubMed] [Google Scholar]

38. Muizzuddin N, Marenus KD, Maes DH. Factors defining sensitive skin and its treatment. Am J Contact Dermat. 1998;9:170–5. [PubMed] [Google Scholar]

39. Saint-Martory C, Roguedas-Contios AM, Sibaud V, Degouy A, Schmitt AM, Misery L. Sensitive skin is not limited to the face. Br J Dermatol. 2008;158:130–3. [PubMed] [Google Scholar]

40. Misery L, Rahhali N, Ambonati M, et al. Evaluation of sensitive scalp severity and symptomatology by using a new score. J Eur Acad Dermatol Venereol. 2011 Jan 17; doi: 10.1111/j.1468-3083.2010.03968.x. [Epub ahead of print] [PubMed] [Google Scholar]

41. Hendrix S, Picker B, Liezmann C, Peters EM. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol. 2008;17:214–27. [PubMed] [Google Scholar]

42. Hordinsky MK, Ericson M. Hair innervation and vasculature. Exp Dermatol. 1999;8:314. [PubMed] [Google Scholar]

43. Halata Z. Sensory innervation of the hairy skin (light-and electronmicroscopic study) J Invest Dermatol. 1993;101:75S. [PubMed] [Google Scholar]

44. Hashimoto K, Ito M, Suzuki Y. Innervation and vasculature of the hair follicle. In: Orfanos CE, Happle R, editors. Hair and Hair Diseases. Springer-Verlag; Berlin: 1990. p. 117. [Google Scholar]

45. Peters EM, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R. Hair cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides. J Invest Dermatol. 2001;116:236–45. [PubMed] [Google Scholar]

46. Peters EM, Ericson ME, Hosoi J, et al. Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance. J Invest Dermatol. 2006;126:1937–47. [PubMed] [Google Scholar]

47. Liu X, Zhang Y, Liao J. Regional differences in capillary density of children’s skin--an enzyme histochemical and stereological study. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1998;14:448–51. [PubMed] [Google Scholar]

48. Pasyk KA, Thomas SV, Hassett CA, Cherry GW, Faller R. Regional differences in capillary density of the normal human dermis. Plast Reconstr Surg. 1989;83:939–45. discussion 946-7. [PubMed] [Google Scholar]

49. Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17. [PMC free article] [PubMed] [Google Scholar]

50. Namer B, Carr R, Johanek LM, Schmelz M, Handwerker HO, Ringkamp M. Separate peripheral pathways for pruritus in man. J Neurophysiol. 2008;100:2062–9. [PMC free article] [PubMed] [Google Scholar]

51. Ständer S, Raap U, Weisshaar E, et al. Pathogenesis of pruritus. J Dtsch Dermatol Ges. 2011;9:456–63. [PubMed] [Google Scholar]

52. Johansson O, Wang L, Hilliges M, Liang Y. Intraepidermal nerves in human skin: PGP 9.5 immunohistochemistry with special reference to the nerve density in skin from different body regions. J Peripher Nerv Syst. 1999;4:43–52. [PubMed] [Google Scholar]

53. Arthur RP, Shelley WB. The innervation of human epidermis. J Invest Dermatol. 1959;32:397–411. [PubMed] [Google Scholar]

54. Truini A, Leone C, Di Stefano G, et al. Topographical distribution of warmth, burning and itch sensations in healthy humans. Neurosci Lett. 2011;494:165–8. [PubMed] [Google Scholar]

55. Rukwied R, Zeck S, Schmelz M, McGlone F. Sensitivity of human scalp skin to pruritic stimuli investigated by intradermal microdialysis in vivo. J Am Acad Dermatol. 2002;47:245–50. [PubMed] [Google Scholar]

56. Steinhoff M, Neisius U, Ikoma A, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–80. [PMC free article] [PubMed] [Google Scholar]

57. Shelley W, Arthur R. The neurohistology and neurophysiology of the itch sensation in man. Arch Dermatol. 1957;76:296–323. [PubMed] [Google Scholar]

58. Ozawa M, Tsuchiyama K, Gomi R, Kurosaki F, Kawamoto Y, Aiba S. Neuroselective transcutaneous electric stimulation reveals body area-specific differences in itch perception. J Am Acad Dermatol. 2006;55:996–1002. [PubMed] [Google Scholar]

59. Essick G, Guest S, Martinez E, Chen C, McGlone F. Site-dependent and subject-related variations in perioral thermal sensitivity. Somatosens Mot Res. 2004;21:159–75. [PubMed] [Google Scholar]

60. Stevens JC, Marks LE, Simonson DC. Regional sensitivity and spatial summation in the warmth sense. Physiol Behav. 1974;13:825–36. [PubMed] [Google Scholar]

61. Stevens JC, Marks LE. Spatial summation of cold. Physiol Behav. 1979;22:541–7. [PubMed] [Google Scholar]

62. Price DD, McHaffie JG, Larson MA. Spatial summation of heat-induced pain: influence of stimulus area and spatial separation of stimuli on perceived pain sensation intensity and unpleasantness. J Neurophysiol. 1989;62:1270–9. [PubMed] [Google Scholar]

63. Murray FS, Hagan BC. Pain threshold and tolerance of hands and feet. J Comp Physiol Psychol. 1973;84:639–43. [PubMed] [Google Scholar]

64. Yamaura K, Oda M, Suwa E, Suzuki M, Sato H, Ueno K. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist. J Toxicol Sci. 2009;34:427–31. [PubMed] [Google Scholar]

65. Cowden JM, Zhang M, Dunford PJ, Thurmond RL. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol. 2010;130:1023–33. [PubMed] [Google Scholar]

66. Sugimoto Y, Iba Y, Nakamura Y, Kayasuga R, Kamei C. Pruritus-associated response mediated by cutaneous histamine H3 receptors. Clin Exp Allergy. 2004;34:456–9. [PubMed] [Google Scholar]

67. Paus R, Maurer M, Slominski A, Czarnetzki BM. Mast cell involvement in murine hair growth. Dev Biol. 1994;163:230–40. [PubMed] [Google Scholar]

68. Maurer M, Fischer E, Handjiski B, et al. Activated skin mast cells are involved in murine hair follicle regression (catagen) Lab Invest. 1997;77:319–32. [PubMed] [Google Scholar]

69. Moretti G, Rebora A, Giacometti C, Boido V, Rampini E, Cipriani C. The quantitative behavior of cutaneous histamine and mast cells in the hair cycles of rats. J Invest Dermatol. 1966;46:231–9. [PubMed] [Google Scholar]

70. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81:449–94. [PubMed] [Google Scholar]

71. Damsgaard TE, Olesen AB, Sorensen FB, Thestrup-Pedersen K, Schiotz PO. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch Dermatol Res. 1997;289:256–60. [PubMed] [Google Scholar]

72. Nakamura M, Toyoda M, Morohashi M. Pruritogenic mediators in psoriasis vulgaris: comparative evaluation of itch-associated cutaneous factors. Br J Dermatol. 2003;149:718–30. [PubMed] [Google Scholar]

73. Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6:151–8. [PubMed] [Google Scholar]

74. Paus R, Schmelz M, Bíró T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest. 2006;116:1174–86. [PMC free article] [PubMed] [Google Scholar]

75. Reddy VB, Shimada SG, Sikand P, Lamotte RH, Lerner EA. Cathepsin S elicits itch and signals via protease-activated receptors. J Invest Dermatol. 2010;130:1468. [PMC free article] [PubMed] [Google Scholar]

76. Steinhoff M, Buddenkotte J, Shpacovitch V, et al. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev. 2005;26:1–43. [PubMed] [Google Scholar]

77. Amadesi S, Nie J, Vergnolle N, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci. 2004;24:4300–12. [PMC free article] [PubMed] [Google Scholar]

78. Rattenholl A, Steinhoff M. Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect. 2008;21:369–81. [PubMed] [Google Scholar]

79. Steinhoff M, Corvera CU, Thoma MS, et al. Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol. 1999;8:282–94. [PubMed] [Google Scholar]

80. Eissa A, Diamandis EP. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem. 2008;389:669–80. [PubMed] [Google Scholar]

81. Lee SE, Jeong SK, Lee SH. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J. 2010;51:808–22. [PMC free article] [PubMed] [Google Scholar]

82. Frateschi S, Camerer E, Crisante G, et al. PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun. 2011;2:161. [PMC free article] [PubMed] [Google Scholar]

83. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 2002;110:1185–90. [PMC free article] [PubMed] [Google Scholar]

84. Di Marzo V, Blumberg PM, Szallasi A. Endovanilloid signaling in pain. Curr Opin Neurobiol. 2002;12:372–9. [PubMed] [Google Scholar]

85. Imamachi N, Park GH, Lee H, et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A. 2009;106:11330–5. [PMC free article] [PubMed] [Google Scholar]

86. Bodó E, Kovács I, Telek A, et al. Vanilloid receptor-1 is widely expressed on various epithelial and mesenchymal cell types of human skin. J Invest Dermatol. 2004;123:410–3. [PubMed] [Google Scholar]

87. Ständer S, Moormann C, Schumacher M, et al. Expression of vanilloid receptor subtype 1 in cutaneous sensory fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol. 2004;13:129–39. [PubMed] [Google Scholar]

88. Bodó E, Bíró T, Telek A, et al. A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol. 2005;166(4):985–98. [PMC free article] [PubMed] [Google Scholar]

89. Maggi CV, Borsini F, Santicioli P. Cutaneous lesions in capsaicin pretreated rats. A trophic role of capsaicin-sensitive afferents? Naunyn-Schmiedebergs Arch Pharmacol. 1987;336:538–45. [PubMed] [Google Scholar]

90. Patel KN, Liu Q, Meeker S, Undem BJ, Dong X. Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch. PLoS One. 2011;6:e20559. Epub 2011 May 31. [PMC free article] [PubMed] [Google Scholar]

91. Pereira U, Boulais N, Lebonvallet N, Pennec JP, Dorange G, Misery L. Mechanisms of the sensory effects of tacrolimus on the skin. Br J Dermatol. 2010;163:70–7. [PubMed] [Google Scholar]

92. Yoshioka T, Imura K, Asakawa M, et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. Invest Dermatol. 2009;129:714–22. [PubMed] [Google Scholar]

93. Radtke C, Sinis N, Sauter M, et al. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res. 2011;32:150–9. [PubMed] [Google Scholar]

94. Facer P, Casula MA, Smith GD, et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 2007;7:11. [PMC free article] [PubMed] [Google Scholar]

95. Borbíró I, Lisztes E, Tóth BI, et al. Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. J Invest Dermatol. 2011 May 19; Epub ahead of print. [PubMed] [Google Scholar]

96. Liu Q, Weng HJ, Patel KN, et al. The Distinct Roles of Two GPCRs, MrgprC11 and PAR2, in Itch and Hyperalgesia. Sci Signal. 2011;4:ra45. [PMC free article] [PubMed] [Google Scholar]

97. Liu Q, Tang Z, Surdenikova L, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–65. [PMC free article] [PubMed] [Google Scholar]

98. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32. [PubMed] [Google Scholar]

99. Lembo PM, Grazzini E, Groblewski T, et al. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci. 2002;5:201–9. [PubMed] [Google Scholar]

100. Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci U S A. 2002;99:14740–5. [PMC free article] [PubMed] [Google Scholar]

101. Sikand P, Dong X, Lamotte RH. BAM8-22 Peptide Produces Itch and Nociceptive Sensations in Humans Independent of Histamine Release. J Neurosci. 2011;31:7563–7. [PMC free article] [PubMed] [Google Scholar]

102. Wilson SR, Gerhold KA, Bifolck-Fisher A, et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011;14:595–602. [PMC free article] [PubMed] [Google Scholar]

103. Bigliardi PL, Tobin DJ, Gaveriaux-Ruff C, Bigliardi-Qi M. Opioids and the skin--where do we stand? Exp Dermatol. 2009;18:424–30. [PubMed] [Google Scholar]

104. Phan NQ, Bernhard JD, Luger TA, Ständer S. Antipruritic treatment with systemic μ-opioid receptor antagonists: a review. J Am Acad Dermatol. 2010;63:680–8. [PubMed] [Google Scholar]

105. Ständer S, Schmelz M. Chronic itch and painesimilarities and differences. Eur J Pain. 2006;10:473–8. [PubMed] [Google Scholar]

106. Andrew D, Craig AD. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci. 2001;4:72–7. [PubMed] [Google Scholar]

107. PG Atanassoff , Brull SJ, Zhang J, Greenquist K, Silverman DG, Lamotte RH. Enhancement of experimental pruritus and mechanically evoked dysesthesiae with local anesthesia. Somatosens Mot Res. 1999;16:291–8. [PubMed] [Google Scholar]

108. Bíró T, Tóth BI, y R, Dobrosi N, Géczy T, Paus R. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta. 2007;1772:1004–21. [PubMed] [Google Scholar]

109. Reich A, Szepietowski JC. Opioid-induced pruritus: an update. Clin Exp Dermatol. 2010;35:2–6. [PubMed] [Google Scholar]

110. Swegle JM, Logemann C. Management of common opioid induced adverse effects. Am Pham Phys. 2006;74:1347–54. [PubMed] [Google Scholar]

111. Szarvas S, Harmon D, Murphy D. Neuraxial opioid-induced pruritus: a review. J Clin Anesth. 2003;15:234–9. [PubMed] [Google Scholar]

112. Thomas DA, Williams GM, Iwata K, Kenshalo DR, Jr, Dubner R. The medullary dorsal horn. A site of action of morphine in producing facial scratching in monkeys. Anesthesiology. 1993;79:548–54. [PubMed] [Google Scholar]

113. Slominski A, Wortsman J, Mazurkiewicz JE, et al. Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. J Lab Clin Med. 1993;122:658–66. [PubMed] [Google Scholar]

114. Tominaga M, Ogawa H, Takamori K. Possible roles of epidermal opioid systems in pruritus of atopic dermatitis. J Invest Dermatol. 2007;127:2228–35. [PubMed] [Google Scholar]

115. Heyer G, Groene D, Martus P. Efficacy of naltrexone on acetylcholine-induced alloknesis in atopic eczema. Exp Dermatol. 2002;11:448–55. [PubMed] [Google Scholar]

116. Brune A, Metze D, Luger TA, Ständer S. Antipruritic therapy with the oral opioid receptor antagonist naltrexone. Open, non-placebo controlled administration in 133 patients. Hautarzt. 2004;55:1130–6. [PubMed] [Google Scholar]

117. Wikström B, Gellert R, Ladefoged SD, et al. Kappa-opioid system in uremic pruritus: multicenter, randomized, double-blind, placebo-controlled clinical studies. J Am Soc Nephrol. 2005;16:3742–7. [PubMed] [Google Scholar]

118. Kumagai H, Ebata T, Takamori K, Muramatsu T, Nakamoto H, Suzuki H. Effect of a novel kappa-receptor agonist, nalfurafine hydrochloride, on severe itch in 337 haemodialysis patients: a Phase III, randomized, double-blind, placebo-controlled study. Nephrol Dial Transplant. 2010;25:1251–7. [PubMed] [Google Scholar]

119. Dawn AG, Yosipovitch G. Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol. 2006;54:527–31. [PubMed] [Google Scholar]

120. Bíró T, Tóth BI, Haskó G, Paus R, Pacher P. The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends Pharmacol Sci. 2009;30:411–20. [PMC free article] [PubMed] [Google Scholar]

121. Ständer S, Schmelz M, Metze D, Luger T, Rukwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci. 2005;38:177–88. [PubMed] [Google Scholar]

122. Eedy DJ, Shaw C, Johnston CF, Buchanan KD. The regional distribution of neuropeptides in human skin as assessed by radioimmunoassay and high-performance liquid chromatography. Clin Exp Dermatol. 1994;19:463–72. [PubMed] [Google Scholar]

123. Peters EM, Liotiri S, Bodóq E, et al. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol. 2007;171:1872–86. [PMC free article] [PubMed] [Google Scholar]

124. Paus R, Heinzelmann T, Schultz KD, Furkert J, Fechner K, Czarnetzki BM. Hair growth induction by substance P. Lab Invest. 1994;71:134–40. [PubMed] [Google Scholar]

125. Arck PC, Handjiski B, Peters EMJ, et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am J Pathol. 2003;162:803–14. [PMC free article] [PubMed] [Google Scholar]

126. Arck PC, Handjiski B, Kuhlmei A, et al. Mast cell deficient and neurokinin-1 receptor knockout mice are protected from stress-induced hair growth inhibition. J Mol Med. 2005;83:386–96. [PubMed] [Google Scholar]

127. Arck P, Paus R. From the brain-skin connection: the neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulation. 2006;13:347–56. [PubMed] [Google Scholar]

128. Stander S, Gunzer M, Metze D, Luger T, Steinhoff M. Localization of micro-opioid receptor 1A on sensory NFs in human skin. Regul Pept. 2002;110:75–83. [PubMed] [Google Scholar]

129. Buldyrev I, Tanner NM, Hsieh HY, Dodd EG, Nguyen LT, Balkowiec A. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J Neurochem. 2006;99:1338–50. [PMC free article] [PubMed] [Google Scholar]

130. Eedy DJ. Neuropeptides in skin. Br J Dermatol. 1993;128:597–605. [PubMed] [Google Scholar]

131. Salomon J, Baran E. The role of selected neuropeptides in pathogenesis of atopic dermatitis. J Eur Acad Dermatol Venereol. 2008;22:223–8. [PubMed] [Google Scholar]

132. Chang SE, Han SS, Jung HJ, Choi JH. Neuropeptides and their receptors in psoriatic skin in relation to pruritus. Br J Dermatol. 2007;156:1272–7. [PubMed] [Google Scholar]

133. Wiśnicka B, Szepietowski JC, Reich A, Orda A. Histamine, Substance P and Calcitonin Gene-Related Peptide Plasma Concentration and Pruritus in Patients Suffering from Psoriasis. Dermatol Psychosom. 2004;5:73–78. [Google Scholar]

134. Reimann S, Luger T, Metze D. Topical administration of capsaicin in dermatology for treatment of itching and pain. Hautarzt. 2000;51:164–72. [PubMed] [Google Scholar]

135. Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7:535–47. [PubMed] [Google Scholar]

136. Scuri M, Samsell L, Piedimonte G. The role of neurotrophins in inflammation and allergy. Inflamm Allergy Drug Targets. 2010;9:173–80. [PubMed] [Google Scholar]

137. Hon KL, Lam MC, Wong KY, Leung TF, Ng PC. Pathophysiology of nocturnal scratching in childhood atopic dermatitis: the role of brain-derived neurotrophic factor and substance P. Br J Dermatol. 2007;157:922–5. [PubMed] [Google Scholar]

138. Grewe M, Vogelsang K, Ruzicka T, Stege H, Krutmann J. Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Invest Dermatol. 2000;114:1108–12. [PubMed] [Google Scholar]

139. Metz M, Botchkarev VA, Botchkareva NV, et al. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin. Exp Dermatol. 2004;13:273–81. [PubMed] [Google Scholar]

140. Verge VM, Richardson PM, Hallin Z, Hökfelt T. Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci. 1995;15:2081–96. [PMC free article] [PubMed] [Google Scholar]

141. Adly MA, Assaf HA, Nada EA, Soliman M, Hussein M. Expression of nerve growth factor and its high-affinity receptor, tyrosine kinase A proteins, in the human scalp skin. J Cutan Pathol. 2006;33:559–68. [PubMed] [Google Scholar]

142. Peters EM, Hendrix S, Gölz G, Klapp BF, Arck PC, Paus R. Nerve growth factor and its precursor differentially regulate hair cycle progression in mice. J Histochem Cytochem. 2006;54:275–88. [PubMed] [Google Scholar]

143. Peters EM, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol. 2006;15:1–13. [PubMed] [Google Scholar]

144. Lang UE, Anders D, Danker-Hopfe H, Hellweg R. Measurement of nerve growth factor serum concentration in a psychologically stressful situation in men. Stress. 2004;7:39–42. [PubMed] [Google Scholar]

145. EM Peters , Handjiski B, Kuhlmei A, et al. Neurogenic inflammation in stress-induced termination of murine hair growth is promoted by nerve growth factor. Am J Pathol. 2004;165:259–71. [PMC free article] [PubMed] [Google Scholar]

146. Toyoda M, Nakamura M, Makino T, Hino T, Kagoura M, Morohashi M. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol. 2002;147:71–9. [PubMed] [Google Scholar]

147. Groneberg DA, Serowka F, Peckenschneider N, et al. Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1. J Neuroimmunol. 2005;161:87–92. [PubMed] [Google Scholar]

148. Tanaka A, Matsuda H. Expression of nerve growth factor in itchy skins of atopic NC/NgaTnd mice. J Vet Med Sci. 2005;67:915–9. [PubMed] [Google Scholar]

149. Papoiu A, Wang H, Nattkemper L, et al. A Study of Serum Concentrations and Skin Levels of NGF in Atopic Dermatitis and Healthy Subject. Neuropeptides. IN PRESS. [PMC free article] [PubMed] [Google Scholar]

150. Schulte-Herbrüggen O, yHolst R, von Elstermann M, Augustin M, Hellweg R. Clinical relevance of nerve growth factor serum levels in patients with atopic dermatitis and psoriasis. Int Arch Allergy Immunol. 2007;144:211–6. [PubMed] [Google Scholar]

151. Raap U, Goltz C, Deneka N, et al. Brain-derived neurotrophic factor is increased in atopic dermatitis and modulates eosinophil functions compared with that seen in nonatopic subjects. J Allergy Clin Immunol. 2005;115:1268–75. [PubMed] [Google Scholar]

152. Urashima R, Mihara M. Cutaneous nerves in atopic dermatitis. A histological, immunohistochemical and electron microscopic study. Virchows Arch. 1998;432:363–70. [PubMed] [Google Scholar]

153. Takano N, Sakurai T, Kurachi M. Effects of anti-nerve growth factor antibody on symptoms in the NC/Nga mouse, an atopic dermatitis model. J Pharmacol Sci. 2005;99:277–86. [PubMed] [Google Scholar]

154. Takano N, Sakurai T, Ohashi Y, Kurachi M. Effects of high-affinity nerve growth factor receptor inhibitors on symptoms in the NC/Nga mouse atopic dermatitis model. Br J Dermatol. 2007;156:241–6. [PubMed] [Google Scholar]

155. Kinkelin I, Mötzing S, Koltenzenburg M, Bröcker EB. Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res. 2000;302:31–7. [PubMed] [Google Scholar]

156. Johansson O, Liang Y, Emtestam L. Increased nerve growth factor- and tyrosine kinase A-like immunoreactivities in prurigo nodularis skin -- an exploration of the cause of neurohyperplasia. Arch Dermatol Res. 2002;293:614–9. [PubMed] [Google Scholar]

157. Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature. 2007;448:700–3. [PubMed] [Google Scholar]

158. Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF. Cellular basis of itch sensation. Science. 2009;325:1531–4. [PMC free article] [PubMed] [Google Scholar]

159. Staniek V, Misery L, Peguet-Navarro J, et al. Expression of gastrin-releasing peptide receptor in human skin. Acta Derm Venereol. 1996;76:282–6. [PubMed] [Google Scholar]

160. Terashi H, Kurata S, Tadokoro T, Sato H, Itami S. Immunohistochemical localization of gastrin releasing peptide in human skin and its proliferative effect and mRNA expression in cultured human keratinocytes, outer root sheath cells and fibroblasts. J Jpn P R S. 1996;16:373–80. [Google Scholar]

161. Tominaga M, Ogawa H, Takamori K. Histological characterization of cutaneous nerve fibers containing gastrin-releasing peptide in NC/Nga mice: an atopic dermatitis model. J Invest Dermatol. 2009;129:2901–5. [PubMed] [Google Scholar]

162. Katugampola R, Church MK, Clough GF. The neurogenic vasodilator response to endothelin-1: a study in human skin in vivo. Exp Physiol. 2000;85:839–46. [PubMed] [Google Scholar]

163. Liang J, Kawamata T, Ji W. Molecular signaling of pruritus induced by endothelin-1 in mice. Exp Biol Med (Maywood) 2010;235:1300–5. [PubMed] [Google Scholar]

164. Shrestha S, Gracias NG, Mujenda F, Khodorova A, Vasko MR, Strichartz GR. Local antinociception induced by endothelin-1 in the hairy skin of the rat’s back. J Pain. 2009;10:702–14. [PMC free article] [PubMed] [Google Scholar]

165. Darsow U, Scharein E, Bromm B, Ring J. Skin testing of the pruritogenic activity of histamine and cytokines (interleukin-2 and tumour necrosis factor-alpha) at the dermal-epidermal junction. Br J Dermatol. 1997;137:415–7. [PubMed] [Google Scholar]

166. Martin HA, Murphy PR. Interleukin-2 activates a sub-population of cutaneous C-fibre polymodal nociceptors in the rat hairy skin. Arch Physiol Biochem. 1995;103:136–48. [PubMed] [Google Scholar]

167. Wahlgren CF, Tengvall Linder M, Hagermark O, Scheynius A. Itch and inflammation induced by intradermally injected interleukin-2 in atopic dermatitis patients and healthy subjects. Arch Dermatol Res. 1995;287:572–80. [PubMed] [Google Scholar]

168. Yosipovitch G, Papoiu AD. What causes itch in atopic dermatitis? Curr Allergy Asthma Rep. 2008;8:306–11. [PubMed] [Google Scholar]

169. Gaspari AA, Lotze MT, Rosenberg SA, Stern JB, Katz SI. Dermatologic changes associated with interleukin 2 administration. JAMA. 1987;258:1624–9. [PubMed] [Google Scholar]

170. Kasraie S, Niebuhr M, Werfel T. Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy. 2010;65:712–21. [PubMed] [Google Scholar]

171. Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5:752–60. [PubMed] [Google Scholar]

172. Sonkoly E, Muller A, Lauerma AI, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117:411–7. [PubMed] [Google Scholar]

173. Takaoka A, Arai I, Sugimoto M, et al. Involvement of IL-31 on scratching behavior in NC/Nga mice with atopic-like dermatitis. Exp Dermatol. 2006;15:161–7. [PubMed] [Google Scholar]

174. Kimata H, Lindley I. Detection of plasma interleukin-8 in atopic dermatitis. Arch Dis Child. 1994;70:119–22. [PMC free article] [PubMed] [Google Scholar]

175. Hatano Y, Katagiri K, Takayasu S. Increased levels in vivo of mRNAs for IL-8 and macrophage inflammatory protein-1 alpha (MIP-1 alpha), but not of RANTES mRNA in peripheral blood mononuclear cells of patients with atopic dermatitis. Clin Exp Immunol. 1999;117:237–43. [PMC free article] [PubMed] [Google Scholar]

176. Lippert U, Hoer A, Moller A, Ramboer I, Cremer B, Henz BM. Role of antigeninduced cytokine release in atopic pruritus. Int Arch Allergy Immunol. 1998;116:36–9. [PubMed] [Google Scholar]

177. Buddenkotte J, Steinhoff M. Pathophysiology and therapy of pruritus in allergic and atopic diseases. Allergy. 2010;65:805–21. [PubMed] [Google Scholar]

178. Chan LS, Robinson N, Xu L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol. 2001;117:977–83. [PubMed] [Google Scholar]

179. Gibbs BF. Human basophils as effectors and immunomodulators of allergic inflammation and innate immunity. Clin Exp Med. 2005;5:43–9. [PubMed] [Google Scholar]

180. Pieri L, Bogani C, Guglielmelli P, et al. The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils from patients with polycythemia vera. Haematologica. 2009;94:1537–45. [PMC free article] [PubMed] [Google Scholar]

181. Saini SS. Basophil responsiveness in chronic urticaria. Curr Allergy Asthma Rep. 2009;9:286–90. [PMC free article] [PubMed] [Google Scholar]

182. O’Reilly M, Alpert R, Jenkinson S, et al. Identification of a histamine H4 receptor on human eosinophils--role in eosinophil chemotaxis. J Recept Signal Transduct Res. 2002;22:431–48. [PubMed] [Google Scholar]

183. Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 2004;24:271–81. [PubMed] [Google Scholar]

184. Saint-Leger D, Kligman AM, Stoudemayer TJ. The role of the resident microflora in the pathogenesis of dandruff. J Soc Cosmet Chem. 1989;40:109–17. [Google Scholar]

185. Jang SJ, Lim SH, Ko JH, et al. The Investigation on the Distribution of Malassezia Yeasts on the Normal Korean Skin by 26S rDNA PCR-RFLP. Ann Dermatol. 2009;21:18–26. [PMC free article] [PubMed] [Google Scholar]

186. Kesavan S, Walters CE, Holland KT, Ingham E. The effects of Malassezia on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in vitro. Med Mycol. 1998;36:97–106. [PubMed] [Google Scholar]

187. Thomas DS, Ingham E, Bojar RA, Holland KT. In vitro modulation of human keratinocyte pro- and anti-inflammatory cytokine production by the capsule of Malassezia species. FEMS Immunol Med Microbiol. 2008;54:203–14. [PubMed] [Google Scholar]

188. Boelsma E, Tanojo H, Boddé HE, Ponec M. An in vivo-In vitro study of the use of a human skin equivalent for irritancy screening of fatty acids. Toxicol In Vitro. 1997;11:365–76. [PubMed] [Google Scholar]

189. Boelsma E, Tanojo H, Boddé HE, Ponec M. Assessment of the potential irritancy of oleic acid on human skin: Evaluation in vitro and in vivo. Toxicol In Vitro. 1996;10:729–42. [PubMed] [Google Scholar]

190. Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc. 2005;10:194–7. [PubMed] [Google Scholar]

191. Kerr K, Darcy T, Henry J, et al. Epidermal changes associated with symptomatic resolution of dandruff: biomarkers of scalp health. Int J Dermatol. 2011;50:102–13. [PubMed] [Google Scholar]

192. Tanojo H, Bouwstra JA, Junginger HE, Boddé HE. In vitro human skin barrier modulation by fatty acids: skin permeation and thermal analysis studies. Pharm Res. 1997;14:42–9. [PubMed] [Google Scholar]

193. Tanojo H, Boelsma E, Junginger HE, Ponec M, Boddé HE. In vivo human skin barrier modulation by topical application of fatty acids. Skin Pharmacol Appl Skin Physiol. 1998;11:87–97. [PubMed] [Google Scholar]

194. Nakabayashi A, Sei Y, Guillot J. Identification of Malassezia species isolated from patients with seborrheic dermatitis, atopic dermatitis, pityriasis vesicolor and normal subjects. Med Mycol. 2000;38:337–41. [PubMed] [Google Scholar]

195. Sugita T, Suto H, Unno T, et al. Moleculer analysis of Malassezia microflora on the skin of atopic dermatitis patients and healthy subjects. J Clin Microbiol. 2001;39:3486–90. [PMC free article] [PubMed] [Google Scholar]

196. Lindgren L, Wahlgren CF, Johansson SG, Wiklund I, Nordvall SL. Occurrence and clinical features of sensitization to Pityrosporum orbiculare and other allergens in children with atopic dermatitis. Acta Derm Venereol. 1995;75:300–4. [PubMed] [Google Scholar]

197. Dubin G. Extracellular proteases of Staphylococcus spp. Biol Chem. 2002;383:1075–86. [PubMed] [Google Scholar]

198. Kotani A, Kusu F. HPLC with electrochemical detection for determining the distribution of free fatty acids in skin surface lipids from the human face and scalp. Arch Dermatol Res. 2002;294:172–7. [PubMed] [Google Scholar]

199. Zouboulis CC. The sebaceous gland. Hautarzt. 2010;61:467–77. [PubMed] [Google Scholar]

200. De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010;2010:321494. Epub 2010 Oct 20. [PMC free article] [PubMed] [Google Scholar]

201. Picardo M, Passi S, De Luca C, Morrone A, Bartoli F, Ippolito F. Skin surface lipids in patients affected with atopic dermatitis. In: Czernielewski JM, editor. Immunological and Pharmacological Aspects of Atopic and Contact Eczema. Pharmacology and the Skin. Vol. 4. 1991. pp. 173–4. [Google Scholar]

202. Passi S, Picardo M, Morrone A, De Luca C, Ippolito F. Skin surface lipids in HIV sero-positive and HIV sero-negative patients affected with seborrheic dermatitis. J Dermatol Sci. 1991;2:84–91. [PubMed] [Google Scholar]

203. Fujita F, Azuma T, Tajiri M, Okamoto H, Sano M, Tominaga M. Significance of hair-dye base-induced sensory irritation. Int J Cosmet Sci. 2010;32:217–24. [PubMed] [Google Scholar]

204. Elias PM, Feingold KR. Lipids and the epidermal water barrier: metabolism, regulation, and pathophysiology. Semin Dermatol. 1992;11:176–82. [PubMed] [Google Scholar]

205. Elias PM, Menon GK. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. [PubMed] [Google Scholar]

206. Green SC, Stewart ME, Downing DT. Variation in sebum fatty acid composition among adult humans. J Invest Dermatol. 1984;83:114–7. [PubMed] [Google Scholar]

207. Greene RS, Downing DT, Pochi PE, Strauss JS. Anatomical variation in the amount and composition of human skin surface lipid. J Invest Dermatol. 1970;54:240–7. [PubMed] [Google Scholar]

208. O’goshi K, Iguchi M, Tagami H. Functional analysis of the stratum corneum of scalp skin: studies in patients with alopecia areata and androgenetic alopecia. Arch Dermatol Res. 2000;292:605–11. [PubMed] [Google Scholar]

209. Tey HL, Yosipovitch G. Targeted treatment of pruritus - a look into the future. Br J Dermatol. 2011 Jan 11; doi: 10.1111/j.1365-2133.2011.10217.x. [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

How do you stop an itchy scalp?

Reduce your risk for an itchy scalp by washing your hair regularly to remove built-up oils. Wash your hair in warm — but not excessively hot — water to avoid irritating and drying out the scalp. To reduce allergic reactions, try to avoid using products that contain: dyes.

What causes an extremely itchy head?

Dandruff and seborrheic dermatitis These are the most common reasons for an itchy scalp. “Your body's inflammatory response to an overgrowth of yeast causes the itching and flaking associated with these conditions.