Major arteries and veins of the body

Major arteries and veins of the body

Blood flowing through the circulatory system transports nutrients, oxygen, and water to cells throughout the body. The journey might begin and end with the heart, but the blood vessels reach every vital spot along the way. These arteries, veins, and capillaries make for a vast network of pipes. If you were to lay out all the blood vessels of the body in a line, they would stretch for nearly 60,000 miles. That’s enough to circle the earth almost three times!

1. The Three Major Types of Blood Vessels: Arteries, Veins, and Capillaries

Major arteries and veins of the body

Blood vessels flow blood throughout the body. Arteries transport blood away from the heart. Veins return blood back toward the heart. Capillaries surround body cells and tissues to deliver and absorb oxygen, nutrients, and other substances. The capillaries also connect the branches of arteries and to the branches of veins. The walls of most blood vessels have three distinct layers: the tunica externa, the tunica media, and the tunica intima. These layers surround the lumen, the hollow interior through which blood flows.

2. Oxygenated Blood Flows Away from the Heart Through Arteries

Major arteries and veins of the body

The left ventricle of the heart pumps oxygenated blood into the aorta. From there, blood passes through major arteries, which branch into muscular arteries and then microscopic arterioles. The arterioles branch into the capillary networks that supply tissues with oxygen and nutrients. The walls of arteries are thicker than the walls of veins, with more smooth muscle and elastic tissue. This structure allows arteries to dilate as blood pumps through them.

3. Veins Carry Blood Back Toward the Heart

Major arteries and veins of the body

After the capillaries release oxygen and other substances from blood into body tissues, they feed the blood back toward the veins. First the blood enters microscopic vein branches called venules. The venules conduct the blood into the veins, which transport it back to the heart through the venae cavae. Vein walls are thinner and less elastic than artery walls. The pressure pushing blood through them is not as great. In fact, there are valves within the lumen of veins to prevent the backflow of blood.

4. Exchange of Gases, Nutrients, and Waste Between Blood and Tissue Occurs in the Capillaries

Major arteries and veins of the body

Capillaries are tiny vessels that branch out from arterioles to form networks around body cells. In the lungs, capillaries absorb oxygen from inhaled air into the bloodstream and release carbon dioxide for exhalation. Elsewhere in the body, oxygen and other nutrients diffuse from blood in the capillaries to the tissues they supply. The capillaries absorb carbon dioxide and other waste products from the tissues and then flow the deoxygenated blood into the veins.

5. The Constant Pumping of the Heart Maintains Blood Pressure and Supply Throughout the Body

Major arteries and veins of the body

The blood moving through the circulatory system puts pressure on the walls of the blood vessels. Blood pressure results from the blood flow force generated by the pumping heart and the resistance of the blood vessel walls. When the heart contracts, it pumps blood out through the arteries. The blood pushes against the vessel walls and flows faster under this high pressure. When the ventricles relax, the vessel walls push back against the decreased force. Blood flow slows down under this low pressure.

Download Blood Vessels Lab Manuals

Learning Outcomes

  • Explain the structure of arteries, veins, and capillaries

Major arteries and veins of the body

Figure 1. The major human arteries and veins are shown. (credit: modification of work by Mariana Ruiz Villareal)

The blood from the heart is carried through the body by a complex network of blood vessels (Figure 1). Arteries take blood away from the heart. The main artery is the aorta that branches into major arteries that take blood to different limbs and organs. These major arteries include the carotid artery that takes blood to the brain, the brachial arteries that take blood to the arms, and the thoracic artery that takes blood to the thorax and then into the hepatic, renal, and gastric arteries for the liver, kidney, and stomach, respectively. The iliac artery takes blood to the lower limbs. The major arteries diverge into minor arteries, and then smaller vessels called arterioles, to reach more deeply into the muscles and organs of the body.

Arterioles diverge into capillary beds. Capillary beds contain a large number (10 to 100) of capillaries that branch among the cells and tissues of the body. Capillaries are narrow-diameter tubes that can fit red blood cells through in single file and are the sites for the exchange of nutrients, waste, and oxygen with tissues at the cellular level. Fluid also crosses into the interstitial space from the capillaries. The capillaries converge again into venules that connect to minor veins that finally connect to major veins that take blood high in carbon dioxide back to the heart. Veins are blood vessels that bring blood back to the heart. The major veins drain blood from the same organs and limbs that the major arteries supply. Fluid is also brought back to the heart via the lymphatic system.

The structure of the different types of blood vessels reflects their function or layers. There are three distinct layers, or tunics, that form the walls of blood vessels (Figure 2). The first tunic is a smooth, inner lining of endothelial cells that are in contact with the red blood cells. The endothelial tunic is continuous with the endocardium of the heart. In capillaries, this single layer of cells is the location of diffusion of oxygen and carbon dioxide between the endothelial cells and red blood cells, as well as the exchange site via endocytosis and exocytosis. The movement of materials at the site of capillaries is regulated by vasoconstriction, narrowing of the blood vessels, and vasodilation, widening of the blood vessels; this is important in the overall regulation of blood pressure.

Major arteries and veins of the body

Figure 2. Arteries and veins consist of three layers: an outer tunica externa, a middle tunica media, and an inner tunica intima. Capillaries consist of a single layer of epithelial cells, the tunica intima. (credit: modification of work by NCI, NIH)

Veins and arteries both have two further tunics that surround the endothelium: the middle tunic is composed of smooth muscle and the outermost layer is connective tissue (collagen and elastic fibers). The elastic connective tissue stretches and supports the blood vessels, and the smooth muscle layer helps regulate blood flow by altering vascular resistance through vasoconstriction and vasodilation. The arteries have thicker smooth muscle and connective tissue than the veins to accommodate the higher pressure and speed of freshly pumped blood. The veins are thinner walled as the pressure and rate of flow are much lower. In addition, veins are structurally different than arteries in that veins have valves to prevent the backflow of blood. Because veins have to work against gravity to get blood back to the heart, contraction of skeletal muscle assists with the flow of blood back to the heart.

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More

What are the 4 major arteries?

These arteries are the celiac, mesenteric, renal, and iliac arteries. The iliac additionally provides blood to the pelvis and branches into the leg. The largest artery of the leg is the femoral artery. This artery provides blood supply to the upper portion of the leg.

What are the 7 major arteries?

The descending aorta. The thoracic aorta. The abdominal aorta..
The common iliac arteries. The hypogastric artery. The external iliac artery..

What are the 5 main arteries of the body?

Specific arteries provide blood to organs or certain parts of your body, such as:.
Coronary arteries: Heart..
Carotid arteries: Brain, head, face and neck..
Vertebral arteries: Brain and spine..
Iliac arteries: Pelvis..
Femoral artery: Legs..
Subclavian arteries: Head, neck and arms..

What are the 5 major veins?

The great vessels include your:.
Aorta..
Main pulmonary artery (also called your pulmonary trunk)..
Pulmonary veins..
Superior vena cava..
Inferior vena cava..